Ana-Voica Bojar, Natalia Piotrowska, Victor Barbu, Hans-Peter Bojar, Fatima Pawełczyk, Andrei Smeu, Ovidiu Guja
{"title":"<i>Ursus spelaeus</i> (Rosenmüller, 1794) during the MIS 3: new evidence from the Cioclovina Uscată Cave and radiocarbon age overview for the Carpathians.","authors":"Ana-Voica Bojar, Natalia Piotrowska, Victor Barbu, Hans-Peter Bojar, Fatima Pawełczyk, Andrei Smeu, Ovidiu Guja","doi":"10.1080/10256016.2024.2376730","DOIUrl":null,"url":null,"abstract":"<p><p><i>Ursus spelaeus</i>, the Late Pleistocene a cave bear is known from numerous accumulations found in the fossil sector of caves situated in the Carpathian and Apuseni Mountains. In this study, we present new radiocarbon data along a profile of the Cioclovina Uscată Cave, which is situated in the South Carpathians. The data suggest that, during the entire Marine Isotope Stage 3 (MIS 3) interval, the cave was serving as a shelter for <i>U. spelaeus</i>, with the oldest dated bone indicating an age of > 47,710 and the youngest one, an age of 31,820 ± 400 years cal BP. Histogram plots of 110 radiocarbon data from different caves of the Carpathian and Apuseni Mountains as Cioclovina Uscată, Peștera (Cave) cu Oase, Peștera Muierii, or Peștera Urșilor, respectively, show a maximum expansion of the cave bear population between 50,000 and 40,000, a decline between 40,000 and 35,000 and a partial recovery from 35,000-30,000 years cal BP. Radiocarbon data of <i>Homo sapiens</i> remains, younger than 35,000 years cal BP, support the fact that <i>H. sapiens</i> accessed the same caves where the cave bear persisted to hibernate. Besides general cool conditions and restricted food sources, the presence of <i>H. sapiens</i> constituted an additional stress factor driving the cave bear to extinction.</p>","PeriodicalId":14597,"journal":{"name":"Isotopes in Environmental and Health Studies","volume":" ","pages":"1-13"},"PeriodicalIF":1.1000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Isotopes in Environmental and Health Studies","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/10256016.2024.2376730","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0
Abstract
Ursus spelaeus, the Late Pleistocene a cave bear is known from numerous accumulations found in the fossil sector of caves situated in the Carpathian and Apuseni Mountains. In this study, we present new radiocarbon data along a profile of the Cioclovina Uscată Cave, which is situated in the South Carpathians. The data suggest that, during the entire Marine Isotope Stage 3 (MIS 3) interval, the cave was serving as a shelter for U. spelaeus, with the oldest dated bone indicating an age of > 47,710 and the youngest one, an age of 31,820 ± 400 years cal BP. Histogram plots of 110 radiocarbon data from different caves of the Carpathian and Apuseni Mountains as Cioclovina Uscată, Peștera (Cave) cu Oase, Peștera Muierii, or Peștera Urșilor, respectively, show a maximum expansion of the cave bear population between 50,000 and 40,000, a decline between 40,000 and 35,000 and a partial recovery from 35,000-30,000 years cal BP. Radiocarbon data of Homo sapiens remains, younger than 35,000 years cal BP, support the fact that H. sapiens accessed the same caves where the cave bear persisted to hibernate. Besides general cool conditions and restricted food sources, the presence of H. sapiens constituted an additional stress factor driving the cave bear to extinction.
期刊介绍:
Isotopes in Environmental and Health Studies provides a unique platform for stable isotope studies in geological and life sciences, with emphasis on ecology. The international journal publishes original research papers, review articles, short communications, and book reviews relating to the following topics:
-variations in natural isotope abundance (isotope ecology, isotope biochemistry, isotope hydrology, isotope geology)
-stable isotope tracer techniques to follow the fate of certain substances in soil, water, plants, animals and in the human body
-isotope effects and tracer theory linked with mathematical modelling
-isotope measurement methods and equipment with respect to environmental and health research
-diagnostic stable isotope application in medicine and in health studies
-environmental sources of ionizing radiation and its effects on all living matter