Yao Yao, Shuhui Deng, Jessica Fong Ng, Mei Yuan, Chandraditya Chakraborty, Vera JoyWeiler, Nikhil Munshi, Mariateresa Fulciniti
{"title":"Unlocking the therapeutic potential of selective CDK7 and BRD4 inhibition against multiple myeloma cell growth.","authors":"Yao Yao, Shuhui Deng, Jessica Fong Ng, Mei Yuan, Chandraditya Chakraborty, Vera JoyWeiler, Nikhil Munshi, Mariateresa Fulciniti","doi":"10.3324/haematol.2024.285491","DOIUrl":null,"url":null,"abstract":"<p><p>Multiple myeloma (MM) is a plasma cell malignancy that is considered incurable despite the recent therapeutic advances. Effective targeted therapies are, therefore, needed. Our previous studies proved that inhibiting CDK7 impairs the cell cycle and metabolic programs by disrupting E2F1 and MYC transcriptional activities, making it an appealing therapeutic target for MM. Given that CDK7 and BRD4 operate in two distinct regulatory axes in MM, we hypothesized that targeting these two complementary pathways simultaneously would lead to a deeper and more durable response. Indeed, combination therapy had superior activity against MM cell growth and viability, and induced apoptosis to a greater extent than did single-agent therapy in both cell lines and patients' cells. This synergistic activity was also observed in Waldenström macroglobulinemia (WM) cells and with other inhibitors of E2F1 activity. Dual inhibition effectively impaired the MYC and E2F transcriptional programs and MM tumor growth and progression in xenograft animal models, providing evidence for the potential of combination therapy as a therapeutic strategy in MM and WM.</p>","PeriodicalId":12964,"journal":{"name":"Haematologica","volume":" ","pages":"153-162"},"PeriodicalIF":8.2000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11694116/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Haematologica","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3324/haematol.2024.285491","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEMATOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Multiple myeloma (MM) is a plasma cell malignancy that is considered incurable despite the recent therapeutic advances. Effective targeted therapies are, therefore, needed. Our previous studies proved that inhibiting CDK7 impairs the cell cycle and metabolic programs by disrupting E2F1 and MYC transcriptional activities, making it an appealing therapeutic target for MM. Given that CDK7 and BRD4 operate in two distinct regulatory axes in MM, we hypothesized that targeting these two complementary pathways simultaneously would lead to a deeper and more durable response. Indeed, combination therapy had superior activity against MM cell growth and viability, and induced apoptosis to a greater extent than did single-agent therapy in both cell lines and patients' cells. This synergistic activity was also observed in Waldenström macroglobulinemia (WM) cells and with other inhibitors of E2F1 activity. Dual inhibition effectively impaired the MYC and E2F transcriptional programs and MM tumor growth and progression in xenograft animal models, providing evidence for the potential of combination therapy as a therapeutic strategy in MM and WM.
期刊介绍:
Haematologica is a journal that publishes articles within the broad field of hematology. It reports on novel findings in basic, clinical, and translational research.
Scope:
The scope of the journal includes reporting novel research results that:
Have a significant impact on understanding normal hematology or the development of hematological diseases.
Are likely to bring important changes to the diagnosis or treatment of hematological diseases.