Kevin John, Joe Page, Shane M Heffernan, Gillian E Conway, Neil E Bezodis, Liam P Kilduff, Brad Clark, Julien D Périard, Mark Waldron
{"title":"The effect of a 4-week, remotely administered, post-exercise passive leg heating intervention on determinants of endurance performance.","authors":"Kevin John, Joe Page, Shane M Heffernan, Gillian E Conway, Neil E Bezodis, Liam P Kilduff, Brad Clark, Julien D Périard, Mark Waldron","doi":"10.1007/s00421-024-05558-4","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Post-exercise passive heating has been reported to augment adaptations associated with endurance training. The current study evaluated the effect of a 4-week remotely administered, post-exercise passive leg heating protocol, using an electrically heated layering ensemble, on determinants of endurance performance.</p><p><strong>Methods: </strong>Thirty recreationally trained participants were randomly allocated to either a post-exercise passive leg heating (PAH, n = 16) or unsupervised training only control group (CON, n = 14). The PAH group wore the passive heating ensemble for 90-120 min/day, completing a total of 20 (16 post-exercise and 4 stand-alone leg heating) sessions across 4 weeks. Whole-body (peak oxygen uptake, gas exchange threshold, gross efficiency and pulmonary oxygen uptake kinetics), single-leg exercise (critical torque and NIRS-derived muscle oxygenation), resting vascular characteristics (flow-mediated dilation) and angiogenic blood measures (nitrate, vascular endothelial growth factor and hypoxia inducible factor 1-α) were recorded to characterize the endurance phenotype. All measures were assessed before (PRE), at 2 weeks (MID) and after (POST) the intervention.</p><p><strong>Results: </strong>There was no effect of the intervention on test of whole-body endurance capacity, vascular function or blood markers (p > 0.05). However, oxygen kinetics were adversely affected by PAH, denoted by a slowing of the phase II time constant; τ (p = 0.02). Furthermore, critical torque-deoxygenation ratio was improved in CON relative to PAH (p = 0.03).</p><p><strong>Conclusion: </strong>We have demonstrated that PAH had no ergogenic benefit but instead elicited some unfavourable effects on sub-maximal exercise characteristics in recreationally trained individuals.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00421-024-05558-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/25 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: Post-exercise passive heating has been reported to augment adaptations associated with endurance training. The current study evaluated the effect of a 4-week remotely administered, post-exercise passive leg heating protocol, using an electrically heated layering ensemble, on determinants of endurance performance.
Methods: Thirty recreationally trained participants were randomly allocated to either a post-exercise passive leg heating (PAH, n = 16) or unsupervised training only control group (CON, n = 14). The PAH group wore the passive heating ensemble for 90-120 min/day, completing a total of 20 (16 post-exercise and 4 stand-alone leg heating) sessions across 4 weeks. Whole-body (peak oxygen uptake, gas exchange threshold, gross efficiency and pulmonary oxygen uptake kinetics), single-leg exercise (critical torque and NIRS-derived muscle oxygenation), resting vascular characteristics (flow-mediated dilation) and angiogenic blood measures (nitrate, vascular endothelial growth factor and hypoxia inducible factor 1-α) were recorded to characterize the endurance phenotype. All measures were assessed before (PRE), at 2 weeks (MID) and after (POST) the intervention.
Results: There was no effect of the intervention on test of whole-body endurance capacity, vascular function or blood markers (p > 0.05). However, oxygen kinetics were adversely affected by PAH, denoted by a slowing of the phase II time constant; τ (p = 0.02). Furthermore, critical torque-deoxygenation ratio was improved in CON relative to PAH (p = 0.03).
Conclusion: We have demonstrated that PAH had no ergogenic benefit but instead elicited some unfavourable effects on sub-maximal exercise characteristics in recreationally trained individuals.