Plant specialized metabolism: Diversity of terpene synthases and their products

IF 8.3 2区 生物学 Q1 PLANT SCIENCES
{"title":"Plant specialized metabolism: Diversity of terpene synthases and their products","authors":"","doi":"10.1016/j.pbi.2024.102607","DOIUrl":null,"url":null,"abstract":"<div><p>Terpenoids are ubiquitous to all kingdoms of life and are one of the most diverse groups of compounds, both structurally and functionally. Despite being derived from common precursors, isopentenyl diphosphate and dimethylallyl diphosphate, their exceptional diversity is partly driven by the substrate and product promiscuity of terpene synthases that produce a wide array of terpene skeletons. Plant terpene synthases can be subdivided into different subfamilies based on sequence homology and function. However, in many cases, structural architecture of the enzyme is more essential to product specificity than primary sequence alone, and distantly related terpene synthases can often mediate similar reactions. As such, the focus of this brief review is on some of the recent progress in understanding terpene synthase function and diversity.</p></div>","PeriodicalId":11003,"journal":{"name":"Current opinion in plant biology","volume":null,"pages":null},"PeriodicalIF":8.3000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current opinion in plant biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1369526624000980","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Terpenoids are ubiquitous to all kingdoms of life and are one of the most diverse groups of compounds, both structurally and functionally. Despite being derived from common precursors, isopentenyl diphosphate and dimethylallyl diphosphate, their exceptional diversity is partly driven by the substrate and product promiscuity of terpene synthases that produce a wide array of terpene skeletons. Plant terpene synthases can be subdivided into different subfamilies based on sequence homology and function. However, in many cases, structural architecture of the enzyme is more essential to product specificity than primary sequence alone, and distantly related terpene synthases can often mediate similar reactions. As such, the focus of this brief review is on some of the recent progress in understanding terpene synthase function and diversity.

植物的特殊代谢:萜烯合成酶及其产物的多样性。
萜类化合物在生物界无处不在,是结构和功能最多样化的化合物之一。尽管萜类化合物来自共同的前体--二磷酸异戊烯酯和二磷酸二甲基烯丙基酯,但其特殊的多样性在一定程度上是由萜烯合成酶的底物和产物杂交性所驱动的,这种合成酶可产生多种萜烯骨架。根据序列同源性和功能,植物萜烯合成酶可细分为不同的亚家族。不过,在许多情况下,酶的结构构造对产品特异性的影响比单纯的主序列更为重要,而且远缘的萜烯合成酶往往可以介导类似的反应。因此,本简要综述的重点是了解萜烯合成酶功能和多样性方面的最新进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Current opinion in plant biology
Current opinion in plant biology 生物-植物科学
CiteScore
16.30
自引率
3.20%
发文量
131
审稿时长
6-12 weeks
期刊介绍: Current Opinion in Plant Biology builds on Elsevier's reputation for excellence in scientific publishing and long-standing commitment to communicating high quality reproducible research. It is part of the Current Opinion and Research (CO+RE) suite of journals. All CO+RE journals leverage the Current Opinion legacy - of editorial excellence, high-impact, and global reach - to ensure they are a widely read resource that is integral to scientists' workflow.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信