Jaime Jiménez, Ruchir Mishra, Xinyue Wang, Ciara M. Magee, Bryony C. Bonning
{"title":"Composition and abundance of midgut plasma membrane proteins in two major hemipteran vectors of plant viruses, Bemisia tabaci and Myzus persicae","authors":"Jaime Jiménez, Ruchir Mishra, Xinyue Wang, Ciara M. Magee, Bryony C. Bonning","doi":"10.1002/arch.22133","DOIUrl":null,"url":null,"abstract":"<p>Multiple species within the order Hemiptera cause severe agricultural losses on a global scale. Aphids and whiteflies are of particular importance due to their role as vectors for hundreds of plant viruses, many of which enter the insect via the gut. To facilitate the identification of novel targets for disruption of plant virus transmission, we compared the relative abundance and composition of the gut plasma membrane proteomes of adult <i>Bemisia tabaci</i> (Hemiptera: Aleyrodidae) and <i>Myzus persicae</i> (Hemiptera: Aphididae), representing the first study comparing the gut plasma membrane proteomes of two different insect species. Brush border membrane vesicles were prepared from dissected guts, and proteins extracted, identified and quantified from triplicate samples via timsTOF mass spectrometry. A total of 1699 <i>B. tabaci</i> and 1175 <i>M. persicae</i> proteins were identified. Following bioinformatics analysis and manual curation, 151 <i>B. tabaci</i> and 115 <i>M. persicae</i> proteins were predicted to localize to the plasma membrane of the gut microvilli. These proteins were further categorized based on molecular function and biological process according to Gene Ontology terms. The most abundant gut plasma membrane proteins were identified. The ten plasma membrane proteins that differed in abundance between the two insect species were associated with the terms “protein binding” and “viral processes.” In addition to providing insight into the gut physiology of hemipteran insects, these gut plasma membrane proteomes provide context for appropriate identification of plant virus receptors based on a combination of bioinformatic prediction and protein localization on the surface of the insect gut.</p>","PeriodicalId":8281,"journal":{"name":"Archives of Insect Biochemistry and Physiology","volume":"116 3","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/arch.22133","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Insect Biochemistry and Physiology","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/arch.22133","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Multiple species within the order Hemiptera cause severe agricultural losses on a global scale. Aphids and whiteflies are of particular importance due to their role as vectors for hundreds of plant viruses, many of which enter the insect via the gut. To facilitate the identification of novel targets for disruption of plant virus transmission, we compared the relative abundance and composition of the gut plasma membrane proteomes of adult Bemisia tabaci (Hemiptera: Aleyrodidae) and Myzus persicae (Hemiptera: Aphididae), representing the first study comparing the gut plasma membrane proteomes of two different insect species. Brush border membrane vesicles were prepared from dissected guts, and proteins extracted, identified and quantified from triplicate samples via timsTOF mass spectrometry. A total of 1699 B. tabaci and 1175 M. persicae proteins were identified. Following bioinformatics analysis and manual curation, 151 B. tabaci and 115 M. persicae proteins were predicted to localize to the plasma membrane of the gut microvilli. These proteins were further categorized based on molecular function and biological process according to Gene Ontology terms. The most abundant gut plasma membrane proteins were identified. The ten plasma membrane proteins that differed in abundance between the two insect species were associated with the terms “protein binding” and “viral processes.” In addition to providing insight into the gut physiology of hemipteran insects, these gut plasma membrane proteomes provide context for appropriate identification of plant virus receptors based on a combination of bioinformatic prediction and protein localization on the surface of the insect gut.
期刊介绍:
Archives of Insect Biochemistry and Physiology is an international journal that publishes articles in English that are of interest to insect biochemists and physiologists. Generally these articles will be in, or related to, one of the following subject areas: Behavior, Bioinformatics, Carbohydrates, Cell Line Development, Cell Signalling, Development, Drug Discovery, Endocrinology, Enzymes, Lipids, Molecular Biology, Neurobiology, Nucleic Acids, Nutrition, Peptides, Pharmacology, Pollinators, Proteins, Toxicology. Archives will publish only original articles. Articles that are confirmatory in nature or deal with analytical methods previously described will not be accepted.