Taghreed Mohamed Mohamed Zewail, Menatalla Ashraf Saad, Shrouk Medhat AbdelRazik, Basma Mohamed Eldakiky, Eman Radi Sadik
{"title":"Synthesis of sodium alginate / polyvinyl alcohol / polyethylene glycol semi-interpenetrating hydrogel as a draw agent for forward osmosis desalination","authors":"Taghreed Mohamed Mohamed Zewail, Menatalla Ashraf Saad, Shrouk Medhat AbdelRazik, Basma Mohamed Eldakiky, Eman Radi Sadik","doi":"10.1186/s13065-024-01246-8","DOIUrl":null,"url":null,"abstract":"<div><p>Typically, hydrogels are described as three-dimensional networks of hydrophilic polymers that are able to capture a certain mass of water within their structure. Recently, hydrogels have been widely used as drawing agents in forward osmosis (FO) desalination processes. The major aim of this study is to prepare a novel semi-interpenetrating hydrogel by crosslinking sodium alginate (SA) and polyvinyl alcohol (PVA) by using the epichlorohydrin (ECH) crosslinker and polyethylene glycol (PEG) interpenetrated within the hydrogel’s network as a linear polymer. Based on the optimum composition of SA/PVA composite hydrogel obtained from our earlier research, the effect of various percentages of PEG on the response of the hydrogel was investigated. The optimal composition of SA/PVA/PEG hydrogel was characterized by scanning electron microscopy (SEM), compression strength testing, Fourier transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD). The morphological and mechanical properties of the SA/PVA/PEG semi-interpenetrating hydrogel were also compared to those of the SA/PVA composite hydrogel. Moreover, the performance of the optimal SA/PVA/PEG hydrogel in a FO batch unit as a drawing agent was investigated based on the optimal operation conditions from our previous experiments. The results showed that the optimal PEG/polymer blend mass ratio was 0.25, which increased the swelling ratio (SR) (%) of the hydrogel from 645.42 (of the neat SA/PVA hydrogel) to 2683. The SA/PVA/PEG semi-interpenetrating hydrogel was superior to the SA/PVA copolymer hydrogel in pore structure and mechanical properties. Additionally, in terms of FO desalination, the achieved water flux by SA/PVA/PEG hydrogel is higher than that accomplished by SA/PVA hydrogel.</p></div>","PeriodicalId":496,"journal":{"name":"BMC Chemistry","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11271198/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1186/s13065-024-01246-8","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Typically, hydrogels are described as three-dimensional networks of hydrophilic polymers that are able to capture a certain mass of water within their structure. Recently, hydrogels have been widely used as drawing agents in forward osmosis (FO) desalination processes. The major aim of this study is to prepare a novel semi-interpenetrating hydrogel by crosslinking sodium alginate (SA) and polyvinyl alcohol (PVA) by using the epichlorohydrin (ECH) crosslinker and polyethylene glycol (PEG) interpenetrated within the hydrogel’s network as a linear polymer. Based on the optimum composition of SA/PVA composite hydrogel obtained from our earlier research, the effect of various percentages of PEG on the response of the hydrogel was investigated. The optimal composition of SA/PVA/PEG hydrogel was characterized by scanning electron microscopy (SEM), compression strength testing, Fourier transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD). The morphological and mechanical properties of the SA/PVA/PEG semi-interpenetrating hydrogel were also compared to those of the SA/PVA composite hydrogel. Moreover, the performance of the optimal SA/PVA/PEG hydrogel in a FO batch unit as a drawing agent was investigated based on the optimal operation conditions from our previous experiments. The results showed that the optimal PEG/polymer blend mass ratio was 0.25, which increased the swelling ratio (SR) (%) of the hydrogel from 645.42 (of the neat SA/PVA hydrogel) to 2683. The SA/PVA/PEG semi-interpenetrating hydrogel was superior to the SA/PVA copolymer hydrogel in pore structure and mechanical properties. Additionally, in terms of FO desalination, the achieved water flux by SA/PVA/PEG hydrogel is higher than that accomplished by SA/PVA hydrogel.
期刊介绍:
BMC Chemistry, formerly known as Chemistry Central Journal, is now part of the BMC series journals family.
Chemistry Central Journal has served the chemistry community as a trusted open access resource for more than 10 years – and we are delighted to announce the next step on its journey. In January 2019 the journal has been renamed BMC Chemistry and now strengthens the BMC series footprint in the physical sciences by publishing quality articles and by pushing the boundaries of open chemistry.