High-Efficiency Perovskite Solar Cells with Improved Interfacial Charge Extraction by Bridging Molecules

IF 27.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Minghao Li, Boxin Jiao, Yingchen Peng, Junjie Zhou, Liguo Tan, Ningyu Ren, Yiran Ye, Yue Liu, Ye Yang, Yu Chen, Liming Ding, Chenyi Yi
{"title":"High-Efficiency Perovskite Solar Cells with Improved Interfacial Charge Extraction by Bridging Molecules","authors":"Minghao Li,&nbsp;Boxin Jiao,&nbsp;Yingchen Peng,&nbsp;Junjie Zhou,&nbsp;Liguo Tan,&nbsp;Ningyu Ren,&nbsp;Yiran Ye,&nbsp;Yue Liu,&nbsp;Ye Yang,&nbsp;Yu Chen,&nbsp;Liming Ding,&nbsp;Chenyi Yi","doi":"10.1002/adma.202406532","DOIUrl":null,"url":null,"abstract":"<p>The interface between the perovskite layer and electron transporting layer is a critical determinate for the performance and stability of perovskite solar cells (PSCs). The heterogeneity of the interface critically affects the carrier dynamics at the buried interface. To address this, a bridging molecule, (2-aminoethyl)phosphonic acid (AEP), is introduced for the modification of SnO<sub>2</sub>/perovskite buried interface in n–i–p structure PSCs. The phosphonic acid group strongly bonds to the SnO<sub>2</sub> surface, effectively suppressing the surface carrier traps and leakage current, and uniforming the surface potential. Meanwhile, the amino group influences the growth of perovskite film, resulting in higher crystallinity, phase purity, and fewer defects. Furthermore, the bridging molecules facilitate the charge extraction at the interface, as indicated by the femtosecond transient reflection (fs-TR) spectroscopy, leading to champion power conversion efficiency (PCE) of 26.40% (certified 25.98%) for PSCs. Additionally, the strengthened interface enables improved operational durability of ≈1400 h for the unencapsulated PSCs under ISOS-L-1I protocol.</p>","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"36 38","pages":""},"PeriodicalIF":27.4000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adma.202406532","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The interface between the perovskite layer and electron transporting layer is a critical determinate for the performance and stability of perovskite solar cells (PSCs). The heterogeneity of the interface critically affects the carrier dynamics at the buried interface. To address this, a bridging molecule, (2-aminoethyl)phosphonic acid (AEP), is introduced for the modification of SnO2/perovskite buried interface in n–i–p structure PSCs. The phosphonic acid group strongly bonds to the SnO2 surface, effectively suppressing the surface carrier traps and leakage current, and uniforming the surface potential. Meanwhile, the amino group influences the growth of perovskite film, resulting in higher crystallinity, phase purity, and fewer defects. Furthermore, the bridging molecules facilitate the charge extraction at the interface, as indicated by the femtosecond transient reflection (fs-TR) spectroscopy, leading to champion power conversion efficiency (PCE) of 26.40% (certified 25.98%) for PSCs. Additionally, the strengthened interface enables improved operational durability of ≈1400 h for the unencapsulated PSCs under ISOS-L-1I protocol.

Abstract Image

Abstract Image

通过桥接分子改善界面电荷抽取的高效率 Perovskite 太阳能电池。
包晶层和电子传输层之间的界面是决定包晶太阳能电池性能和稳定性的关键因素。界面的异质性会严重影响埋藏界面的载流子动力学。为了解决这个问题,我们引入了一种桥接分子--(2-氨基乙基)膦酸(AEP),用于修饰 ni-i-p 结构 PSC 中的二氧化锡/包晶埋藏界面。膦酸基团与二氧化锡表面紧密结合,有效抑制了表面载流子陷阱和泄漏电流,并使表面电位均匀。同时,氨基会影响包晶体薄膜的生长,使其结晶度更高、相纯度更高、缺陷更少。此外,正如飞秒瞬态反射(fs-TR)光谱所显示的,桥接分子促进了界面上的电荷提取,从而使 PSC 的功率转换效率(PCE)达到 26.40%(认证值为 25.98%)。此外,在 ISOS-L-1I 协议下,加强的界面使未封装的 PSCs 的运行耐久性提高了≈1400 h。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信