Transgenerational Inheritance Effects of Copper Oxide Nanoparticles (CuONPs) Induced Asthenospermia and Infertility via Gamete H3K9me3 Insufficiency Pathway in Mice.
Weike Shaoyong, Wusu Wang, Bo Pan, Rui Liu, Lin Yin, Reshouyang Wangjie, Haolun Tian, Yizhen Wang, Mingliang Jin
{"title":"Transgenerational Inheritance Effects of Copper Oxide Nanoparticles (CuONPs) Induced Asthenospermia and Infertility via Gamete H3K9me3 Insufficiency Pathway in Mice.","authors":"Weike Shaoyong, Wusu Wang, Bo Pan, Rui Liu, Lin Yin, Reshouyang Wangjie, Haolun Tian, Yizhen Wang, Mingliang Jin","doi":"10.1021/acsnano.4c05660","DOIUrl":null,"url":null,"abstract":"<p><p>The widespread use of colloidal copper oxide nanoparticles (CuONPs) poses substantial health risks to humans. CuONPs can penetrate the blood-testis barrier and induce spermatocide, and the understanding of the adverse effects of asthenospermia on spermatogenesis, embryonic development, and transgenerational inheritance is limited. In this study, male mice were orally administered different doses of CuONPs via continuous exposure for one spermatozoon development period (35 days) and then exposed without CuONPs for another 35 days. The CuONPs that accumulated in the testes induced oxidative stress (OS), affected the progress of spermatogenesis and sperm capacitation, and compromised epigenetic modifications, resulting in asthenospermia and embryonic development anomalies in male offspring. In a mechanism, CuONP exposure impaired the self-renewal and differentiation of spermatogonial stem cells (SSCs) via the GDNF/PI3K/AKT signaling pathway under OS. Importantly, CuONP exposure was found to potentially lower H3K9me3 levels in paternal sperm, which would further transgenerational transmission and interfere with sperm mitochondrial energy metabolism and motility, leading to asthenospermia and subfertility in the offspring. Collectively, these data reveal a molecular mechanism by which CuONP exposure disturbs H3K9me3 levels via the OS pathway, which further mediates the asthenospermic effects of reproductive failure by interfering with mitochondrial arrangement and formation in the next generation.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":null,"pages":null},"PeriodicalIF":15.8000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c05660","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The widespread use of colloidal copper oxide nanoparticles (CuONPs) poses substantial health risks to humans. CuONPs can penetrate the blood-testis barrier and induce spermatocide, and the understanding of the adverse effects of asthenospermia on spermatogenesis, embryonic development, and transgenerational inheritance is limited. In this study, male mice were orally administered different doses of CuONPs via continuous exposure for one spermatozoon development period (35 days) and then exposed without CuONPs for another 35 days. The CuONPs that accumulated in the testes induced oxidative stress (OS), affected the progress of spermatogenesis and sperm capacitation, and compromised epigenetic modifications, resulting in asthenospermia and embryonic development anomalies in male offspring. In a mechanism, CuONP exposure impaired the self-renewal and differentiation of spermatogonial stem cells (SSCs) via the GDNF/PI3K/AKT signaling pathway under OS. Importantly, CuONP exposure was found to potentially lower H3K9me3 levels in paternal sperm, which would further transgenerational transmission and interfere with sperm mitochondrial energy metabolism and motility, leading to asthenospermia and subfertility in the offspring. Collectively, these data reveal a molecular mechanism by which CuONP exposure disturbs H3K9me3 levels via the OS pathway, which further mediates the asthenospermic effects of reproductive failure by interfering with mitochondrial arrangement and formation in the next generation.
期刊介绍:
ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.