{"title":"Tunable magnetic synapse for reliable neuromorphic computing","authors":"Hongming Mou, Zhaochu Luo, Xiaozhong Zhang","doi":"10.1063/5.0210317","DOIUrl":null,"url":null,"abstract":"Artificial neural networks (ANNs), inspired by the structure and function of the human brain, have achieved remarkable success in various fields. However, ANNs implemented using conventional complementary metal oxide semiconductor technology face significant limitations. This has prompted exploration of nonvolatile memory technologies as potential solutions to overcome these limitations by integrating storage and computation within a single device. These emerging technologies can retain resistance values without power, allowing them to serve as analog weights in ANNs, mimicking the behavior of biological synapses. While promising, these nonvolatile devices often exhibit inherent nonlinear relationships between resistance and applied voltage, complicating training processes and potentially impacting learning accuracy. This article proposes a magnetic synapse device based on the spin–orbit torque effect with geometrically controlled linear and nonlinear response characteristics. The device consists of a magnetic multilayer stack patterned into a designed shape, where the width variation along the current flow direction allows for controllable magnetic domain wall propagation. Through finite element method simulations and experimental studies, we demonstrate that by engineering the device geometry, a linear relationship between the applied current and the resulting Hall resistance can be achieved, mimicking the desired linear weight-input behavior in artificial neural networks. Additionally, this study explores the influence of current pulse width on the response curves, revealing a deviation from linearity at longer pulse durations. The geometric tunability of the magnetic synapse device offers a promising approach for realizing reliable and energy-efficient neuromorphic computing architectures.","PeriodicalId":8094,"journal":{"name":"Applied Physics Letters","volume":"53 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Physics Letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0210317","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Artificial neural networks (ANNs), inspired by the structure and function of the human brain, have achieved remarkable success in various fields. However, ANNs implemented using conventional complementary metal oxide semiconductor technology face significant limitations. This has prompted exploration of nonvolatile memory technologies as potential solutions to overcome these limitations by integrating storage and computation within a single device. These emerging technologies can retain resistance values without power, allowing them to serve as analog weights in ANNs, mimicking the behavior of biological synapses. While promising, these nonvolatile devices often exhibit inherent nonlinear relationships between resistance and applied voltage, complicating training processes and potentially impacting learning accuracy. This article proposes a magnetic synapse device based on the spin–orbit torque effect with geometrically controlled linear and nonlinear response characteristics. The device consists of a magnetic multilayer stack patterned into a designed shape, where the width variation along the current flow direction allows for controllable magnetic domain wall propagation. Through finite element method simulations and experimental studies, we demonstrate that by engineering the device geometry, a linear relationship between the applied current and the resulting Hall resistance can be achieved, mimicking the desired linear weight-input behavior in artificial neural networks. Additionally, this study explores the influence of current pulse width on the response curves, revealing a deviation from linearity at longer pulse durations. The geometric tunability of the magnetic synapse device offers a promising approach for realizing reliable and energy-efficient neuromorphic computing architectures.
期刊介绍:
Applied Physics Letters (APL) features concise, up-to-date reports on significant new findings in applied physics. Emphasizing rapid dissemination of key data and new physical insights, APL offers prompt publication of new experimental and theoretical papers reporting applications of physics phenomena to all branches of science, engineering, and modern technology.
In addition to regular articles, the journal also publishes invited Fast Track, Perspectives, and in-depth Editorials which report on cutting-edge areas in applied physics.
APL Perspectives are forward-looking invited letters which highlight recent developments or discoveries. Emphasis is placed on very recent developments, potentially disruptive technologies, open questions and possible solutions. They also include a mini-roadmap detailing where the community should direct efforts in order for the phenomena to be viable for application and the challenges associated with meeting that performance threshold. Perspectives are characterized by personal viewpoints and opinions of recognized experts in the field.
Fast Track articles are invited original research articles that report results that are particularly novel and important or provide a significant advancement in an emerging field. Because of the urgency and scientific importance of the work, the peer review process is accelerated. If, during the review process, it becomes apparent that the paper does not meet the Fast Track criterion, it is returned to a normal track.