Ultra-Stable Sodium-Ion Battery Enabled by All-Solid-State Ferroelectric-Engineered Composite Electrolytes

IF 26.6 1区 材料科学 Q1 Engineering
Yumei Wang, Zhongting Wang, Xiaoyu Xu, Sam Jin An Oh, Jianguo Sun, Feng Zheng, Xiao Lu, Chaohe Xu, Binggong Yan, Guangsheng Huang, Li Lu
{"title":"Ultra-Stable Sodium-Ion Battery Enabled by All-Solid-State Ferroelectric-Engineered Composite Electrolytes","authors":"Yumei Wang,&nbsp;Zhongting Wang,&nbsp;Xiaoyu Xu,&nbsp;Sam Jin An Oh,&nbsp;Jianguo Sun,&nbsp;Feng Zheng,&nbsp;Xiao Lu,&nbsp;Chaohe Xu,&nbsp;Binggong Yan,&nbsp;Guangsheng Huang,&nbsp;Li Lu","doi":"10.1007/s40820-024-01474-6","DOIUrl":null,"url":null,"abstract":"<div><h2>Highlights</h2><div>\n \n \n<ul>\n <li>\n <p>The capacity fading mechanism of the conventional Na<sub>3</sub>V<sub>2</sub>(PO<sub>4</sub>)<sub>3</sub>//Na<sub>3</sub>V<sub>2</sub>(PO<sub>4</sub>)<sub>3</sub> (NVP//NVP) cell has been investigated.</p>\n </li>\n <li>\n <p>All-solid-state ferroelectric-engineered composite electrolyte could improve the electrolyte–electrode interfacial stability as well as the interfacial ion conduction of the Na-ion battery using the NVP anode.</p>\n </li>\n <li>\n <p>Outstanding cyclic stability has been achieved in the all-solid-state Na-ion battery using the NVP anode, with a capacity fading rate as low as 0.005% per cycle.</p>\n </li>\n </ul>\n </div></div>","PeriodicalId":714,"journal":{"name":"Nano-Micro Letters","volume":"16 1","pages":""},"PeriodicalIF":26.6000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40820-024-01474-6.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano-Micro Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s40820-024-01474-6","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

Highlights

  • The capacity fading mechanism of the conventional Na3V2(PO4)3//Na3V2(PO4)3 (NVP//NVP) cell has been investigated.

  • All-solid-state ferroelectric-engineered composite electrolyte could improve the electrolyte–electrode interfacial stability as well as the interfacial ion conduction of the Na-ion battery using the NVP anode.

  • Outstanding cyclic stability has been achieved in the all-solid-state Na-ion battery using the NVP anode, with a capacity fading rate as low as 0.005% per cycle.

Abstract Image

全固态铁电工程复合电解质带来的超稳定钠离子电池
研究了传统 Na3V2(PO4)3//Na3V2(PO4)3(NVP//NVP)电池的容量衰减机制。全固态铁电工程复合电解质可以提高使用 NVP 负极的钠离子电池的电解质-电极界面稳定性以及界面离子传导性。使用 NVP 阳极的全固态钠离子电池实现了出色的循环稳定性,每循环容量衰减率低至 0.005%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nano-Micro Letters
Nano-Micro Letters NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
32.60
自引率
4.90%
发文量
981
审稿时长
1.1 months
期刊介绍: Nano-Micro Letters is a peer-reviewed, international, interdisciplinary, and open-access journal published under the SpringerOpen brand. Nano-Micro Letters focuses on the science, experiments, engineering, technologies, and applications of nano- or microscale structures and systems in various fields such as physics, chemistry, biology, material science, and pharmacy.It also explores the expanding interfaces between these fields. Nano-Micro Letters particularly emphasizes the bottom-up approach in the length scale from nano to micro. This approach is crucial for achieving industrial applications in nanotechnology, as it involves the assembly, modification, and control of nanostructures on a microscale.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信