{"title":"Enhancing the durability of mosquito repellent textiles through microencapsulation of lavender oil","authors":"Zeeshan Tariq, Hai-Ting Zhang, Ruo-Qing Wang, Qinghong Zeng, Xinyi Wang, Xiaolu Wang, Sheng-Qun Deng, Xiaoqin Wang","doi":"10.1007/s10340-024-01811-z","DOIUrl":null,"url":null,"abstract":"<p>In this study, the objective was to develop a long-lasting mosquito repellent textile by synthesizing silk-based lavender oil microcapsules and applying them to cotton fabric. Lavender oil, derived from <i>Lavandula angustifolia</i>, was chosen as the plant-based material. The microcapsules’ morphology and the fabric’s surface were examined using optical and scanning electron microscopes. Dynamic light scattering was utilized to measure the capsule size and zeta potential. The mosquito repellent efficacy was evaluated through cage tests before and after multiple wash cycles and after exposure to different environments. A cytotoxicity assay was conducted on functionalized fabrics in order to assess their biocompatibility. Additionally, comfort properties such as breathability and water absorbency were assessed and compared to a control fabric. The results indicated that a higher concentration of lavender oil microcapsules (15 wt%) on the fabric exhibited excellent mosquito repellent efficacy (95.7%) prior to washing, which remained effective as 84.5% even after 40 washes. Furthermore, the functionalized fabric maintained its repellent properties following exposure to temperatures of 25 °C and 37 °C for 4 weeks. The cytotoxicity results indicated that the functionalized fabric exhibited non-toxic properties toward L929 cells, thereby confirming its favorable biocompatibility. This study successfully demonstrated the synthesis and application of silk-based lavender oil microcapsules on textiles, resulting in highly durable mosquito repellent fabrics effective against <i>Aedes aegypti</i> mosquitoes. These findings highlight the potential of this eco-friendly approach for developing effective and long-lasting mosquito repellent textiles.</p>","PeriodicalId":16736,"journal":{"name":"Journal of Pest Science","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pest Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s10340-024-01811-z","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, the objective was to develop a long-lasting mosquito repellent textile by synthesizing silk-based lavender oil microcapsules and applying them to cotton fabric. Lavender oil, derived from Lavandula angustifolia, was chosen as the plant-based material. The microcapsules’ morphology and the fabric’s surface were examined using optical and scanning electron microscopes. Dynamic light scattering was utilized to measure the capsule size and zeta potential. The mosquito repellent efficacy was evaluated through cage tests before and after multiple wash cycles and after exposure to different environments. A cytotoxicity assay was conducted on functionalized fabrics in order to assess their biocompatibility. Additionally, comfort properties such as breathability and water absorbency were assessed and compared to a control fabric. The results indicated that a higher concentration of lavender oil microcapsules (15 wt%) on the fabric exhibited excellent mosquito repellent efficacy (95.7%) prior to washing, which remained effective as 84.5% even after 40 washes. Furthermore, the functionalized fabric maintained its repellent properties following exposure to temperatures of 25 °C and 37 °C for 4 weeks. The cytotoxicity results indicated that the functionalized fabric exhibited non-toxic properties toward L929 cells, thereby confirming its favorable biocompatibility. This study successfully demonstrated the synthesis and application of silk-based lavender oil microcapsules on textiles, resulting in highly durable mosquito repellent fabrics effective against Aedes aegypti mosquitoes. These findings highlight the potential of this eco-friendly approach for developing effective and long-lasting mosquito repellent textiles.
期刊介绍:
Journal of Pest Science publishes high-quality papers on all aspects of pest science in agriculture, horticulture (including viticulture), forestry, urban pests, and stored products research, including health and safety issues.
Journal of Pest Science reports on advances in control of pests and animal vectors of diseases, the biology, ethology and ecology of pests and their antagonists, and the use of other beneficial organisms in pest control. The journal covers all noxious or damaging groups of animals, including arthropods, nematodes, molluscs, and vertebrates.
Journal of Pest Science devotes special attention to emerging and innovative pest control strategies, including the side effects of such approaches on non-target organisms, for example natural enemies and pollinators, and the implementation of these strategies in integrated pest management.
Journal of Pest Science also publishes papers on the management of agro- and forest ecosystems where this is relevant to pest control. Papers on important methodological developments relevant for pest control will be considered as well.