Modernizing rechargeable military batteries

IF 38.6 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Joule Pub Date : 2024-08-21 DOI:10.1016/j.joule.2024.06.019
Brandon J. Hopkins , Nicholas H. Bashian
{"title":"Modernizing rechargeable military batteries","authors":"Brandon J. Hopkins ,&nbsp;Nicholas H. Bashian","doi":"10.1016/j.joule.2024.06.019","DOIUrl":null,"url":null,"abstract":"<div><p>Dr. Brandon J. Hopkins is a lead battery technology engineer at MITRE in the emerging technology division with expertise in techno-economics and decarbonization strategy focused on energy storage, the grid, and electric vehicles. Previously, he worked at Ford Motor Company as a research engineer to advance Ford’s electrification strategy. At the U.S. Naval Research Laboratory, he performed research on primary and rechargeable zinc batteries. He received a BA from Harvard University and an MS and PhD from the Massachusetts Institute of Technology in mechanical engineering. He is an inventor on 5 patents and has co-authored 17 journal articles.</p><p>Dr. Nicholas H. Bashian is a senior battery technology scientist at MITRE in the emerging technology division. His research focuses on the investigation of next-generation batteries as well as the analysis of military battery usage and system integration. His previous work includes the electrochemical and <em>in situ</em> structural characterization of chalcogenide electrode materials for Li-ion and Na-ion batteries in addition to the development of solid electrolytes. With extensive experience in maturing battery technologies for defense applications and assessing energy storage needs for specialty applications, Dr. Bashian has co-authored 15 journal articles.</p></div>","PeriodicalId":343,"journal":{"name":"Joule","volume":null,"pages":null},"PeriodicalIF":38.6000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Joule","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2542435124002952","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Dr. Brandon J. Hopkins is a lead battery technology engineer at MITRE in the emerging technology division with expertise in techno-economics and decarbonization strategy focused on energy storage, the grid, and electric vehicles. Previously, he worked at Ford Motor Company as a research engineer to advance Ford’s electrification strategy. At the U.S. Naval Research Laboratory, he performed research on primary and rechargeable zinc batteries. He received a BA from Harvard University and an MS and PhD from the Massachusetts Institute of Technology in mechanical engineering. He is an inventor on 5 patents and has co-authored 17 journal articles.

Dr. Nicholas H. Bashian is a senior battery technology scientist at MITRE in the emerging technology division. His research focuses on the investigation of next-generation batteries as well as the analysis of military battery usage and system integration. His previous work includes the electrochemical and in situ structural characterization of chalcogenide electrode materials for Li-ion and Na-ion batteries in addition to the development of solid electrolytes. With extensive experience in maturing battery technologies for defense applications and assessing energy storage needs for specialty applications, Dr. Bashian has co-authored 15 journal articles.

军用充电电池的现代化
Brandon J. Hopkins 博士是 MITRE 新兴技术部门的首席电池技术工程师,擅长技术经济学和去碳化战略,重点关注能源存储、电网和电动汽车。此前,他曾在福特汽车公司担任研究工程师,负责推进福特的电气化战略。在美国海军研究实验室,他从事过原电池和可充电锌电池的研究。他拥有哈佛大学学士学位、麻省理工学院机械工程硕士和博士学位。Nicholas H. Bashian 博士是 MITRE 新兴技术部门的高级电池技术科学家。他的研究重点是研究下一代电池以及分析军用电池的使用和系统集成。除了固体电解质的开发之外,他以前的工作还包括锂离子和纳离子电池用瑀电极材料的电化学和原位结构表征。Bashian 博士在成熟国防应用电池技术和评估特殊应用的储能需求方面拥有丰富的经验,他与人合作撰写了 15 篇期刊论文。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Joule
Joule Energy-General Energy
CiteScore
53.10
自引率
2.00%
发文量
198
期刊介绍: Joule is a sister journal to Cell that focuses on research, analysis, and ideas related to sustainable energy. It aims to address the global challenge of the need for more sustainable energy solutions. Joule is a forward-looking journal that bridges disciplines and scales of energy research. It connects researchers and analysts working on scientific, technical, economic, policy, and social challenges related to sustainable energy. The journal covers a wide range of energy research, from fundamental laboratory studies on energy conversion and storage to global-level analysis. Joule aims to highlight and amplify the implications, challenges, and opportunities of novel energy research for different groups in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信