Dual-Driven Interfaces of a CoP/CoO Cocatalyst on a Host Photocatalyst for Rapid Charge Transport in Solar-Driven H2 Evolution

IF 7.3 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Qiang Wang, Lina Kong, Jianping Xu, Baozeng Zhou, Xiaofan Liu, Ziyu Lin, Shaobo Shi, Xiaosong Zhang, Lan Li
{"title":"Dual-Driven Interfaces of a CoP/CoO Cocatalyst on a Host Photocatalyst for Rapid Charge Transport in Solar-Driven H2 Evolution","authors":"Qiang Wang, Lina Kong, Jianping Xu, Baozeng Zhou, Xiaofan Liu, Ziyu Lin, Shaobo Shi, Xiaosong Zhang, Lan Li","doi":"10.1021/acssuschemeng.4c03443","DOIUrl":null,"url":null,"abstract":"The construction of efficient and nonprecious cocatalysts, along with the establishment of rapid interfacial charge migration pathways to host semiconductors, is a major process in enhancing photocatalytic water splitting performance and remains a formidable challenge. Herein, the composition of CoP/CoO cocatalysts on g-C<sub>3</sub>N<sub>4</sub> is regulated through phosphating for efficient and stable H<sub>2</sub> evolution. Comprehensive analyses reveal that the CoO nanocrystals, possessing a bandgap of 1.95 eV, are uniformly loaded onto g-C<sub>3</sub>N<sub>4</sub> with a portion undergoing an in situ transformation to metallic CoP, thereby forming a well-defined interfacial energy level structure for carrier separation. Moreover, the CoP/CoO cocatalysts exhibited a lower hydrogen adsorption Gibbs free energy (Δ<i>G</i><sub>H</sub>) than that of the mono CoP or CoO. The optimal CoP/CoO/g-C<sub>3</sub>N<sub>4</sub> exhibits an attractive and stable rate of solar-driven H<sub>2</sub> evolution at 0.86 mmol·g<sup>–1</sup>·h<sup>–1</sup>, surpassing the rates of CoO/g-C<sub>3</sub>N<sub>4</sub> and Pt/g-C<sub>3</sub>N<sub>4</sub> by 30 and 1.5 times, respectively. The dual-driven interfaces of CoP/CoO/g-C<sub>3</sub>N<sub>4</sub> provide a 2-fold acceleration for directional carrier transfer, in conjunction with accelerated surface reaction kinetics, resulting in efficient and stable H<sub>2</sub> evolution. This scalable strategy, focusing interfacial engineering for rapid carrier transfer, offers a novel perspective in the design of highly active cocatalysts to boost the photocatalytic application.","PeriodicalId":25,"journal":{"name":"ACS Sustainable Chemistry & Engineering","volume":"1 1","pages":""},"PeriodicalIF":7.3000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Sustainable Chemistry & Engineering","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acssuschemeng.4c03443","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The construction of efficient and nonprecious cocatalysts, along with the establishment of rapid interfacial charge migration pathways to host semiconductors, is a major process in enhancing photocatalytic water splitting performance and remains a formidable challenge. Herein, the composition of CoP/CoO cocatalysts on g-C3N4 is regulated through phosphating for efficient and stable H2 evolution. Comprehensive analyses reveal that the CoO nanocrystals, possessing a bandgap of 1.95 eV, are uniformly loaded onto g-C3N4 with a portion undergoing an in situ transformation to metallic CoP, thereby forming a well-defined interfacial energy level structure for carrier separation. Moreover, the CoP/CoO cocatalysts exhibited a lower hydrogen adsorption Gibbs free energy (ΔGH) than that of the mono CoP or CoO. The optimal CoP/CoO/g-C3N4 exhibits an attractive and stable rate of solar-driven H2 evolution at 0.86 mmol·g–1·h–1, surpassing the rates of CoO/g-C3N4 and Pt/g-C3N4 by 30 and 1.5 times, respectively. The dual-driven interfaces of CoP/CoO/g-C3N4 provide a 2-fold acceleration for directional carrier transfer, in conjunction with accelerated surface reaction kinetics, resulting in efficient and stable H2 evolution. This scalable strategy, focusing interfacial engineering for rapid carrier transfer, offers a novel perspective in the design of highly active cocatalysts to boost the photocatalytic application.
宿主光催化剂上的 CoP/CoO 催化剂双驱动界面在太阳能驱动的 H2 演化中实现快速电荷传输
构建高效的非贵金属茧催化剂,同时建立快速的界面电荷迁移到宿主半导体的途径,是提高光催化水分离性能的主要过程,也是一项艰巨的挑战。本文通过磷化作用调节 g-C3N4 上 CoP/CoO 催化剂的组成,以实现高效稳定的 H2 演化。综合分析表明,带隙为 1.95 eV 的 CoO 纳米晶体被均匀地负载在 g-C3N4 上,其中一部分发生了金属 CoP 的原位转化,从而形成了用于载流子分离的定义明确的界面能级结构。此外,CoP/CoO 催化剂的氢吸附吉布斯自由能(ΔGH)低于单 CoP 或 CoO 催化剂。最佳的 CoP/CoO/g-C3N4 在太阳能驱动下的 H2 演化率为 0.86 mmol-g-1-h-1,比 CoO/g-C3N4 和 Pt/g-C3N4 分别高出 30 倍和 1.5 倍,具有吸引力且非常稳定。CoP/CoO/g-C3N4 的双驱动界面为载流子的定向转移提供了 2 倍的加速度,同时加速了表面反应动力学,从而实现了高效、稳定的 H2 演化。这种以界面工程为重点实现载流子快速转移的可扩展策略为设计高活性茧催化剂以促进光催化应用提供了新的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Sustainable Chemistry & Engineering
ACS Sustainable Chemistry & Engineering CHEMISTRY, MULTIDISCIPLINARY-ENGINEERING, CHEMICAL
CiteScore
13.80
自引率
4.80%
发文量
1470
审稿时长
1.7 months
期刊介绍: ACS Sustainable Chemistry & Engineering is a prestigious weekly peer-reviewed scientific journal published by the American Chemical Society. Dedicated to advancing the principles of green chemistry and green engineering, it covers a wide array of research topics including green chemistry, green engineering, biomass, alternative energy, and life cycle assessment. The journal welcomes submissions in various formats, including Letters, Articles, Features, and Perspectives (Reviews), that address the challenges of sustainability in the chemical enterprise and contribute to the advancement of sustainable practices. Join us in shaping the future of sustainable chemistry and engineering.
文献相关原料
公司名称
产品信息
阿拉丁
Urea
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信