Enhancing heterojunction interface charge transport efficiency in NiCo-LDHs@Co/CoO-CNFs for high-performance asymmetric and zinc-ion hybrid supercapacitors

IF 10.5 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
{"title":"Enhancing heterojunction interface charge transport efficiency in NiCo-LDHs@Co/CoO-CNFs for high-performance asymmetric and zinc-ion hybrid supercapacitors","authors":"","doi":"10.1016/j.carbon.2024.119482","DOIUrl":null,"url":null,"abstract":"<div><p>The lack of active groups and poor dispersion of pristine carbon substrates lead to their inability to composite with other materials effectively, so that the electron transfer between them is inefficient. Therefore, in order to design carbon-based composites with high conductivity and electrochemical properties, the electron transfer between them must be enhanced first. Herein, the Co/CoO quantum dots doped carbon nanofiber (Co/CoO–CNF) materials with mesopore, high degree of graphitization and mechanical flexibility are synthesized via an electrospinning method. Then, ultrathin NiCo-LDHs are uniformly loaded on the Co/CoO-CNFs in situ to form NiCo-LDHs@Co/CoO-CNFs. Benefiting from the Fermi energy level difference and heterointerface between Co/CoO-CNFs (E<sub>F</sub> = −4.44 eV) and NiCo-LDHs (E<sub>F</sub> = −2.12 eV), electrons can be tansfered rapidly from NiCo-LDHs to Co/CoO-CNFs during the electrochemical reaction, so that NiCo-LDHs@Co/CoO-CNFs exhibit the excellent specific capacitance of 2055 F g<sup>−1</sup> at 1 A g<sup>−1</sup>. When using in a flexible asymmetric supercapacitor, NiCo-LDHs@Co/CoO-CNFs shows a high energy density of 54.0 W h kg<sup>−1</sup> at 760.0 W kg<sup>−1</sup>. Furthermore, assembled as the Zn-ion hybrid supercapacitor, NiCo-LDHs@Co/CoO-CNFs can also display an ultra-high energy density of 108 W h kg<sup>−1</sup> at 914.8 W kg<sup>−1</sup>, as well as outstanding work durability (the capacitance of 98.2 % after 10,000 cycles).</p></div>","PeriodicalId":262,"journal":{"name":"Carbon","volume":null,"pages":null},"PeriodicalIF":10.5000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0008622324007012","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The lack of active groups and poor dispersion of pristine carbon substrates lead to their inability to composite with other materials effectively, so that the electron transfer between them is inefficient. Therefore, in order to design carbon-based composites with high conductivity and electrochemical properties, the electron transfer between them must be enhanced first. Herein, the Co/CoO quantum dots doped carbon nanofiber (Co/CoO–CNF) materials with mesopore, high degree of graphitization and mechanical flexibility are synthesized via an electrospinning method. Then, ultrathin NiCo-LDHs are uniformly loaded on the Co/CoO-CNFs in situ to form NiCo-LDHs@Co/CoO-CNFs. Benefiting from the Fermi energy level difference and heterointerface between Co/CoO-CNFs (EF = −4.44 eV) and NiCo-LDHs (EF = −2.12 eV), electrons can be tansfered rapidly from NiCo-LDHs to Co/CoO-CNFs during the electrochemical reaction, so that NiCo-LDHs@Co/CoO-CNFs exhibit the excellent specific capacitance of 2055 F g−1 at 1 A g−1. When using in a flexible asymmetric supercapacitor, NiCo-LDHs@Co/CoO-CNFs shows a high energy density of 54.0 W h kg−1 at 760.0 W kg−1. Furthermore, assembled as the Zn-ion hybrid supercapacitor, NiCo-LDHs@Co/CoO-CNFs can also display an ultra-high energy density of 108 W h kg−1 at 914.8 W kg−1, as well as outstanding work durability (the capacitance of 98.2 % after 10,000 cycles).

Abstract Image

Abstract Image

提高 NiCo-LDHs@Co/CoO-CNFs异质结界面电荷传输效率,打造高性能不对称锌离子混合超级电容器
由于原始碳基底缺乏活性基团且分散性较差,导致其无法与其他材料有效复合,从而使它们之间的电子转移效率低下。因此,要设计出具有高导电性和电化学性能的碳基复合材料,首先必须增强它们之间的电子传递。本文通过电纺丝方法合成了具有中孔、高石墨化程度和机械柔性的 Co/CoO 量子点掺杂碳纳米纤维(Co/CoO-CNF)材料。然后,在 Co/CoO-CNFs 上原位均匀负载超薄 NiCo-LDHs,形成 NiCo-LDHs@Co/CoO-CNFs。得益于 Co/CoO-CNFs (EF=-4.44 eV)和 NiCo-LDHs(EF=-2.12 eV)之间的费米能级差和异质界面,电子可以在电化学反应过程中迅速从 NiCo-LDHs 传导到 Co/CoO-CNFs,从而使 NiCoLDHs@Co/CoO-CNFs 在 1 A g-1 的条件下表现出 2055 F g-1 的优异比电容。当用于柔性非对称超级电容器时,NiCo-LDHs@Co/CoO-CNFs 在 760.0 W kg-1 的条件下显示出 54.0 Wh kg-1 的高能量密度。此外,组装成 Zn 离子混合超级电容器后,NiCo-LDHs@Co/CoO-CNFs 还能在 914.8 W kg-1 的条件下显示出 108 Wh kg-1 的超高能量密度,以及出色的工作耐久性(10000 次循环后电容为 98.2%)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Carbon
Carbon 工程技术-材料科学:综合
CiteScore
20.80
自引率
7.30%
发文量
0
审稿时长
23 days
期刊介绍: The journal Carbon is an international multidisciplinary forum for communicating scientific advances in the field of carbon materials. It reports new findings related to the formation, structure, properties, behaviors, and technological applications of carbons. Carbons are a broad class of ordered or disordered solid phases composed primarily of elemental carbon, including but not limited to carbon black, carbon fibers and filaments, carbon nanotubes, diamond and diamond-like carbon, fullerenes, glassy carbon, graphite, graphene, graphene-oxide, porous carbons, pyrolytic carbon, and other sp2 and non-sp2 hybridized carbon systems. Carbon is the companion title to the open access journal Carbon Trends. Relevant application areas for carbon materials include biology and medicine, catalysis, electronic, optoelectronic, spintronic, high-frequency, and photonic devices, energy storage and conversion systems, environmental applications and water treatment, smart materials and systems, and structural and thermal applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信