Bruno Delgado Clerot, Lourenço Correr-Sobrinho, Milena Bandini, Evaldo Pinheiro Beserra-Neto, Fernanda Midori Tsuzuki, Rafael Rocha Pacheco, Ana Rosa Costa
{"title":"Effect of hydrofluoric acid concentration and aging on the bond strength ceramics to a resin cement.","authors":"Bruno Delgado Clerot, Lourenço Correr-Sobrinho, Milena Bandini, Evaldo Pinheiro Beserra-Neto, Fernanda Midori Tsuzuki, Rafael Rocha Pacheco, Ana Rosa Costa","doi":"10.1590/0103-6440202405669","DOIUrl":null,"url":null,"abstract":"<p><p>This study evaluated the influence of hydrofluoric acid (HF) concentration and thermal cycling on the microshear bond strength (µSBS) of a resin luting agent to IPS e.max® CAD and Rosetta® SM. Ceramic specimens (12.0 x 14.0 x 1.5mm) were randomized into 8 groups (n=10) according to HF concentration, commercial brand, and aging. Immediately after polishing, and etching, all specimens were silanized and a layer of adhesive was applied. A PVS mold of 3 mm thickness and 10mm diameter with (four) 1.0mm holes was fabricated, placed on each specimen, and then filled with a resin luting agent. Half of the specimens were subjected to the µSBS test using an Instron at a speed of 1.0 mm/min, following a 24-hour storage in deionized water at 37ºC. The remaining specimens were subjected to thermal cycling (5ºC-55ºC, 30 seconds per bath) and µSBS. The data were evaluated utilizing a three-way ANOVA and Tukey's post-hoc test (α=0.05). Significant differences were found for HF concentration and aging (p<0.0001). No significant difference in µSBS was found for commercial brands (p=0.085). The interaction between brand and HF concentration (p=0.358), brand and aging (p=0.135), and HF concentration and aging (p=0.138) were not statistically significant. The triple interaction among these factors was not statistically significant (p=0.610). In conclusion, the bond strength is affected by the HF concentration. No statistical difference was observed between the two ceramics. Thermal cycling significantly reduced µSBS.</p>","PeriodicalId":101363,"journal":{"name":"Brazilian dental journal","volume":"35 ","pages":"5669"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11262762/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brazilian dental journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1590/0103-6440202405669","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This study evaluated the influence of hydrofluoric acid (HF) concentration and thermal cycling on the microshear bond strength (µSBS) of a resin luting agent to IPS e.max® CAD and Rosetta® SM. Ceramic specimens (12.0 x 14.0 x 1.5mm) were randomized into 8 groups (n=10) according to HF concentration, commercial brand, and aging. Immediately after polishing, and etching, all specimens were silanized and a layer of adhesive was applied. A PVS mold of 3 mm thickness and 10mm diameter with (four) 1.0mm holes was fabricated, placed on each specimen, and then filled with a resin luting agent. Half of the specimens were subjected to the µSBS test using an Instron at a speed of 1.0 mm/min, following a 24-hour storage in deionized water at 37ºC. The remaining specimens were subjected to thermal cycling (5ºC-55ºC, 30 seconds per bath) and µSBS. The data were evaluated utilizing a three-way ANOVA and Tukey's post-hoc test (α=0.05). Significant differences were found for HF concentration and aging (p<0.0001). No significant difference in µSBS was found for commercial brands (p=0.085). The interaction between brand and HF concentration (p=0.358), brand and aging (p=0.135), and HF concentration and aging (p=0.138) were not statistically significant. The triple interaction among these factors was not statistically significant (p=0.610). In conclusion, the bond strength is affected by the HF concentration. No statistical difference was observed between the two ceramics. Thermal cycling significantly reduced µSBS.