Automated HER2 Scoring in Breast Cancer Images Using Deep Learning and Pyramid Sampling.

IF 5 Q1 ENGINEERING, BIOMEDICAL
BME frontiers Pub Date : 2024-07-23 eCollection Date: 2024-01-01 DOI:10.34133/bmef.0048
Sahan Yoruc Selcuk, Xilin Yang, Bijie Bai, Yijie Zhang, Yuzhu Li, Musa Aydin, Aras Firat Unal, Aditya Gomatam, Zhen Guo, Darrow Morgan Angus, Goren Kolodney, Karine Atlan, Tal Keidar Haran, Nir Pillar, Aydogan Ozcan
{"title":"Automated HER2 Scoring in Breast Cancer Images Using Deep Learning and Pyramid Sampling.","authors":"Sahan Yoruc Selcuk, Xilin Yang, Bijie Bai, Yijie Zhang, Yuzhu Li, Musa Aydin, Aras Firat Unal, Aditya Gomatam, Zhen Guo, Darrow Morgan Angus, Goren Kolodney, Karine Atlan, Tal Keidar Haran, Nir Pillar, Aydogan Ozcan","doi":"10.34133/bmef.0048","DOIUrl":null,"url":null,"abstract":"<p><p><b>Objective and Impact Statement:</b> Human epidermal growth factor receptor 2 (HER2) is a critical protein in cancer cell growth that signifies the aggressiveness of breast cancer (BC) and helps predict its prognosis. Here, we introduce a deep learning-based approach utilizing pyramid sampling for the automated classification of HER2 status in immunohistochemically (IHC) stained BC tissue images. <b>Introduction:</b> Accurate assessment of IHC-stained tissue slides for HER2 expression levels is essential for both treatment guidance and understanding of cancer mechanisms. Nevertheless, the traditional workflow of manual examination by board-certified pathologists encounters challenges, including inter- and intra-observer inconsistency and extended turnaround times. <b>Methods:</b> Our deep learning-based method analyzes morphological features at various spatial scales, efficiently managing the computational load and facilitating a detailed examination of cellular and larger-scale tissue-level details. <b>Results:</b> This approach addresses the tissue heterogeneity of HER2 expression by providing a comprehensive view, leading to a blind testing classification accuracy of 84.70%, on a dataset of 523 core images from tissue microarrays. <b>Conclusion:</b> This automated system, proving reliable as an adjunct pathology tool, has the potential to enhance diagnostic precision and evaluation speed, and might substantially impact cancer treatment planning.</p>","PeriodicalId":72430,"journal":{"name":"BME frontiers","volume":"5 ","pages":"0048"},"PeriodicalIF":5.0000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11265840/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BME frontiers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34133/bmef.0048","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Objective and Impact Statement: Human epidermal growth factor receptor 2 (HER2) is a critical protein in cancer cell growth that signifies the aggressiveness of breast cancer (BC) and helps predict its prognosis. Here, we introduce a deep learning-based approach utilizing pyramid sampling for the automated classification of HER2 status in immunohistochemically (IHC) stained BC tissue images. Introduction: Accurate assessment of IHC-stained tissue slides for HER2 expression levels is essential for both treatment guidance and understanding of cancer mechanisms. Nevertheless, the traditional workflow of manual examination by board-certified pathologists encounters challenges, including inter- and intra-observer inconsistency and extended turnaround times. Methods: Our deep learning-based method analyzes morphological features at various spatial scales, efficiently managing the computational load and facilitating a detailed examination of cellular and larger-scale tissue-level details. Results: This approach addresses the tissue heterogeneity of HER2 expression by providing a comprehensive view, leading to a blind testing classification accuracy of 84.70%, on a dataset of 523 core images from tissue microarrays. Conclusion: This automated system, proving reliable as an adjunct pathology tool, has the potential to enhance diagnostic precision and evaluation speed, and might substantially impact cancer treatment planning.

利用深度学习和金字塔采样在乳腺癌图像中自动进行 HER2 评分
目标和影响声明:人表皮生长因子受体 2(HER2)是癌细胞生长过程中的一种关键蛋白,它标志着乳腺癌(BC)的侵袭性,有助于预测其预后。在此,我们介绍一种基于深度学习的方法,该方法利用金字塔采样对免疫组化(IHC)染色的乳腺癌组织图像中的 HER2 状态进行自动分类。简介准确评估 IHC 染色组织切片的 HER2 表达水平对于指导治疗和了解癌症机制至关重要。然而,由获得认证的病理学家进行人工检查的传统工作流程面临着挑战,包括观察者之间和观察者内部的不一致性以及周转时间延长。方法:我们基于深度学习的方法可分析各种空间尺度的形态特征,有效管理计算负荷,促进对细胞和更大规模组织层面细节的详细检查。结果这种方法通过提供一个全面的视角来解决 HER2 表达的组织异质性问题,在一个由 523 张组织芯片核心图像组成的数据集上,盲测分类准确率达到 84.70%。结论该自动化系统作为病理学辅助工具证明是可靠的,有可能提高诊断精确度和评估速度,并对癌症治疗规划产生重大影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.10
自引率
0.00%
发文量
0
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信