{"title":"[A New Method for Determination of Rifampicin and Isoniazid Resistance in Mycobacterium tuberculosis complex Isolates: Capillary Tube Method].","authors":"Nazlı Arslan, Ebru Demiray Gürbüz, Ayşe Aydan Özkütük, Nuran Esen","doi":"10.5578/mb.20249764","DOIUrl":null,"url":null,"abstract":"<p><p>Tuberculosis continues to be an important public health problem worldwide. Culture methods are still considered the gold standard in the diagnosis of tuberculosis and the determination of drug resistance. The most important limitation of these methods is their long turnaround time. Commercial culture systems developed to shorten the duration are emerging as an economic problem, especially for developing countries. Therefore, cheap, fast, easy to apply and objectively evaluable tests are needed. In this study, in addition to culture-based methods for determining RIF and INH resistance in Mycobacterium tuberculosis complex isolates, it was aimed to develop the capillary tube method to accelerate the evaluation process. The study included 27 RIF-resistant, 36 RIF -sensitive, 30 INH-resistant, and 33 INH-sensitive isolates obtained from the mycobacteriology laboratory culture collection, for which susceptibility testing to firstline drugs were previously performed using the BACTEC MGIT 960 system (BD, USA) and were stored. H37Rv standard strain and an external quality control strain (IDT3) with known RIF and INH resistance were used as quality control isolates in the study. As a new testing method, the capillary tube method for detecting rifampicin and isoniazid resistance was compared to the standard BACTEC MGIT 960 system. In the determination of RIF and INH resistance, the sensitivity of the capillary tube method compared to the reference method was determined as 85% and 80%, respectively; however, the specificity values (25% and 45.5%, respectively) for both drugs were found to be low in the studies. The time to detect resistance with the capillary tube method varied between 4-9 days. Capillary tube method, which was developed especially for the rapid identification and treatment of multidrug-resistant isolates, is promising in that it detects resistant strains in a short time with a relatively high sensitivity, although its specificity is very low. It is thought that it would be beneficial to continue the study with a larger number of samples and even improve the method with studies conducted directly from clinical samples.</p>","PeriodicalId":18509,"journal":{"name":"Mikrobiyoloji bulteni","volume":"58 3","pages":"259-269"},"PeriodicalIF":1.1000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mikrobiyoloji bulteni","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.5578/mb.20249764","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Tuberculosis continues to be an important public health problem worldwide. Culture methods are still considered the gold standard in the diagnosis of tuberculosis and the determination of drug resistance. The most important limitation of these methods is their long turnaround time. Commercial culture systems developed to shorten the duration are emerging as an economic problem, especially for developing countries. Therefore, cheap, fast, easy to apply and objectively evaluable tests are needed. In this study, in addition to culture-based methods for determining RIF and INH resistance in Mycobacterium tuberculosis complex isolates, it was aimed to develop the capillary tube method to accelerate the evaluation process. The study included 27 RIF-resistant, 36 RIF -sensitive, 30 INH-resistant, and 33 INH-sensitive isolates obtained from the mycobacteriology laboratory culture collection, for which susceptibility testing to firstline drugs were previously performed using the BACTEC MGIT 960 system (BD, USA) and were stored. H37Rv standard strain and an external quality control strain (IDT3) with known RIF and INH resistance were used as quality control isolates in the study. As a new testing method, the capillary tube method for detecting rifampicin and isoniazid resistance was compared to the standard BACTEC MGIT 960 system. In the determination of RIF and INH resistance, the sensitivity of the capillary tube method compared to the reference method was determined as 85% and 80%, respectively; however, the specificity values (25% and 45.5%, respectively) for both drugs were found to be low in the studies. The time to detect resistance with the capillary tube method varied between 4-9 days. Capillary tube method, which was developed especially for the rapid identification and treatment of multidrug-resistant isolates, is promising in that it detects resistant strains in a short time with a relatively high sensitivity, although its specificity is very low. It is thought that it would be beneficial to continue the study with a larger number of samples and even improve the method with studies conducted directly from clinical samples.
期刊介绍:
Bulletin of Microbiology is the scientific official publication of Ankara Microbiology Society. It is published quarterly in January, April, July and October. The aim of Bulletin of Microbiology is to publish high quality scientific research articles on the subjects of medical and clinical microbiology. In addition, review articles, short communications and reports, case reports, editorials, letters to editor and other training-oriented scientific materials are also accepted. Publishing language is Turkish with a comprehensive English abstract. The editorial policy of the journal is based on independent, unbiased, and double-blinded peer-review. Specialists of medical and/or clinical microbiology, infectious disease and public health, and clinicians and researchers who are training and interesting with those subjects, are the target groups of Bulletin of Microbiology.