Reju Sam John, Hammed Olawale Fatoyinbo, David T S Hayman
{"title":"Modelling Lassa virus dynamics in West African <i>Mastomys natalensis</i> and the impact of human activities.","authors":"Reju Sam John, Hammed Olawale Fatoyinbo, David T S Hayman","doi":"10.1098/rsif.2024.0106","DOIUrl":null,"url":null,"abstract":"<p><p>Lassa fever is a West African rodent-borne viral haemorrhagic fever that kills thousands of people a year, with 100 000 to 300 000 people a year probably infected by Lassa virus (LASV). The main reservoir of LASV is the Natal multimammate mouse, <i>Mastomys natalensis</i>. There is reported asynchrony between peak infection in the rodent population and peak Lassa fever risk among people, probably owing to differing seasonal contact rates. Here, we developed a susceptible-infected-recovered ([Formula: see text])-based model of LASV dynamics in its rodent host, <i>M. natalensis</i>, with a persistently infected class and seasonal birthing to test the impact of changes to seasonal birthing in the future owing to climate and land use change. Our simulations suggest shifting rodent birthing timing and synchrony will alter the peak of viral prevalence, changing risk to people, with viral dynamics mainly stable in adults and varying in the young, but with more infected individuals. We calculate the time-average basic reproductive number, [Formula: see text], for this infectious disease system with periodic changes to population sizes owing to birthing using a time-average method and with a sensitivity analysis show four key parameters: carrying capacity, adult mortality, the transmission parameter among adults and additional disease-induced mortality impact the maintenance of LASV in <i>M. natalensis</i> most, with carrying capacity and adult mortality potentially changeable owing to human activities and interventions.</p>","PeriodicalId":17488,"journal":{"name":"Journal of The Royal Society Interface","volume":"21 216","pages":"20240106"},"PeriodicalIF":3.7000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11267396/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Royal Society Interface","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsif.2024.0106","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/24 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Lassa fever is a West African rodent-borne viral haemorrhagic fever that kills thousands of people a year, with 100 000 to 300 000 people a year probably infected by Lassa virus (LASV). The main reservoir of LASV is the Natal multimammate mouse, Mastomys natalensis. There is reported asynchrony between peak infection in the rodent population and peak Lassa fever risk among people, probably owing to differing seasonal contact rates. Here, we developed a susceptible-infected-recovered ([Formula: see text])-based model of LASV dynamics in its rodent host, M. natalensis, with a persistently infected class and seasonal birthing to test the impact of changes to seasonal birthing in the future owing to climate and land use change. Our simulations suggest shifting rodent birthing timing and synchrony will alter the peak of viral prevalence, changing risk to people, with viral dynamics mainly stable in adults and varying in the young, but with more infected individuals. We calculate the time-average basic reproductive number, [Formula: see text], for this infectious disease system with periodic changes to population sizes owing to birthing using a time-average method and with a sensitivity analysis show four key parameters: carrying capacity, adult mortality, the transmission parameter among adults and additional disease-induced mortality impact the maintenance of LASV in M. natalensis most, with carrying capacity and adult mortality potentially changeable owing to human activities and interventions.
期刊介绍:
J. R. Soc. Interface welcomes articles of high quality research at the interface of the physical and life sciences. It provides a high-quality forum to publish rapidly and interact across this boundary in two main ways: J. R. Soc. Interface publishes research applying chemistry, engineering, materials science, mathematics and physics to the biological and medical sciences; it also highlights discoveries in the life sciences of relevance to the physical sciences. Both sides of the interface are considered equally and it is one of the only journals to cover this exciting new territory. J. R. Soc. Interface welcomes contributions on a diverse range of topics, including but not limited to; biocomplexity, bioengineering, bioinformatics, biomaterials, biomechanics, bionanoscience, biophysics, chemical biology, computer science (as applied to the life sciences), medical physics, synthetic biology, systems biology, theoretical biology and tissue engineering.