MSC secretome from amniotic fluid halts IL-1β and TNF-α inflammation via the ERK/MAPK pathway, promoting cartilage regeneration in OA in vitro.

IF 1.1 Q4 CELL & TISSUE ENGINEERING
Journal of Stem Cells & Regenerative Medicine Pub Date : 2024-05-31 eCollection Date: 2024-01-01 DOI:10.46582/jsrm.2001002
Supatra Klaymook, Napatara Tirawanchai, Suparat Wichitwiengrat, Puttachart Chuaynarong, Sasiprapa Thongbopit, Keerati Chareancholvanich, Tatsanee Phermthai
{"title":"MSC secretome from amniotic fluid halts IL-1β and TNF-α inflammation via the ERK/MAPK pathway, promoting cartilage regeneration in OA in vitro.","authors":"Supatra Klaymook, Napatara Tirawanchai, Suparat Wichitwiengrat, Puttachart Chuaynarong, Sasiprapa Thongbopit, Keerati Chareancholvanich, Tatsanee Phermthai","doi":"10.46582/jsrm.2001002","DOIUrl":null,"url":null,"abstract":"<p><p>Osteoarthritis (OA) is a degenerative disease that causes chronic pain and disability worldwide. This disease is mainly caused by IL-1β and TNF-α, which lead to cartilage degradation and inhibit the repair capacity of damaged cartilage. Recent studies have shown that amniotic fluid mesenchymal stem cells (AF-MSCs) secrete proteins that can effectively help in the treatment of cartilage damaged by OA. However, the underlying mechanism is still unclear. Therefore, the aim of this study was to investigate the effects and mechanisms behind the healing properties of the AF-MSC secretome (AFS-se) under OA conditions. This study involved growing chondrocyte progenitor cells (CPCs) and traumatized cartilage tissues in the presence of the cytokines IL-1β and TNF-α, which mimic OA conditions. AFS-se was then added to the culture medium to determine its effect on the CPCs and cartilage. Cell migration, endogenous cell outgrowth, the expression of chondrogenic and anabolic genes, and the mechanism of proteins in the NF-κB and MAPK signaling pathways were examined in this study. AFS-se inhibited the inflammatory effects of IL-1β and TNF-α by significantly reducing ERK phosphorylation in the MAPK signaling pathway and decreasing downstream proinflammatory COX2 products. The impaired CPCs recovered their ability to migrate, and endogenous CPCs in injured osteoarthritic cartilage were able to regrow in response to inflammatory stimuli. Additionally, the expression of anabolic genes such as <i>Col I</i>, <i>Col II</i>, and <i>IGF1</i> was restored in defective CPCs. In conclusion, this study demonstrated that AFS-se has therapeutic effects on OA by inhibiting the inflammatory functions of IL-1β and TNF-α through protein phosphorylation in the MAPK pathway while also promoting the regenerative and self-repair functions of CPCs in traumatized cartilage.</p>","PeriodicalId":17155,"journal":{"name":"Journal of Stem Cells & Regenerative Medicine","volume":"20 1","pages":"3-13"},"PeriodicalIF":1.1000,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11262849/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Stem Cells & Regenerative Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46582/jsrm.2001002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q4","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Osteoarthritis (OA) is a degenerative disease that causes chronic pain and disability worldwide. This disease is mainly caused by IL-1β and TNF-α, which lead to cartilage degradation and inhibit the repair capacity of damaged cartilage. Recent studies have shown that amniotic fluid mesenchymal stem cells (AF-MSCs) secrete proteins that can effectively help in the treatment of cartilage damaged by OA. However, the underlying mechanism is still unclear. Therefore, the aim of this study was to investigate the effects and mechanisms behind the healing properties of the AF-MSC secretome (AFS-se) under OA conditions. This study involved growing chondrocyte progenitor cells (CPCs) and traumatized cartilage tissues in the presence of the cytokines IL-1β and TNF-α, which mimic OA conditions. AFS-se was then added to the culture medium to determine its effect on the CPCs and cartilage. Cell migration, endogenous cell outgrowth, the expression of chondrogenic and anabolic genes, and the mechanism of proteins in the NF-κB and MAPK signaling pathways were examined in this study. AFS-se inhibited the inflammatory effects of IL-1β and TNF-α by significantly reducing ERK phosphorylation in the MAPK signaling pathway and decreasing downstream proinflammatory COX2 products. The impaired CPCs recovered their ability to migrate, and endogenous CPCs in injured osteoarthritic cartilage were able to regrow in response to inflammatory stimuli. Additionally, the expression of anabolic genes such as Col I, Col II, and IGF1 was restored in defective CPCs. In conclusion, this study demonstrated that AFS-se has therapeutic effects on OA by inhibiting the inflammatory functions of IL-1β and TNF-α through protein phosphorylation in the MAPK pathway while also promoting the regenerative and self-repair functions of CPCs in traumatized cartilage.

羊水间充质干细胞分泌物通过ERK/MAPK途径阻止IL-1β和TNF-α炎症,促进体外OA软骨再生。
骨关节炎(OA)是一种退行性疾病,在全球范围内造成慢性疼痛和残疾。这种疾病的主要病因是 IL-1β 和 TNF-α,它们会导致软骨退化,抑制受损软骨的修复能力。最近的研究表明,羊水间充质干细胞(AF-MSCs)分泌的蛋白质可有效帮助治疗因 OA 而受损的软骨。然而,其潜在机制仍不清楚。因此,本研究的目的是探究在OA条件下AF-间充质干细胞分泌组(AFS-se)的疗效及其背后的机制。这项研究涉及在模拟 OA 条件的细胞因子 IL-1β 和 TNF-α 存在下培养软骨祖细胞(CPCs)和创伤软骨组织。然后在培养基中加入 AFS-se,以确定其对 CPCs 和软骨的影响。本研究考察了细胞迁移、内源性细胞生长、软骨生成基因和合成代谢基因的表达,以及 NF-κB 和 MAPK 信号通路蛋白的机制。AFS-se通过显著降低MAPK信号通路中的ERK磷酸化和减少下游促炎COX2产物,抑制了IL-1β和TNF-α的炎症效应。受损的 CPCs 恢复了迁移能力,受伤骨关节炎软骨中的内源性 CPCs 能够在炎症刺激下重新生长。此外,有缺陷的 CPCs 还恢复了 Col I、Col II 和 IGF1 等合成代谢基因的表达。总之,本研究表明,AFS-se 可通过 MAPK 通路中的蛋白磷酸化抑制 IL-1β 和 TNF-α 的炎症功能,同时促进创伤软骨中 CPC 的再生和自我修复功能,从而对 OA 起到治疗作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.40
自引率
0.00%
发文量
5
审稿时长
14 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信