Yifei Jin, Borislav Kondov, Goran Kondov, Sunil Singhal, Shuming Nie, Viktor Gruev
{"title":"Convolutional neural network advances in demosaicing for fluorescent cancer imaging with color-near-infrared sensors.","authors":"Yifei Jin, Borislav Kondov, Goran Kondov, Sunil Singhal, Shuming Nie, Viktor Gruev","doi":"10.1117/1.JBO.29.7.076005","DOIUrl":null,"url":null,"abstract":"<p><strong>Significance: </strong>Single-chip imaging devices featuring vertically stacked photodiodes and pixelated spectral filters are advancing multi-dye imaging methods for cancer surgeries, though this innovation comes with a compromise in spatial resolution. To mitigate this drawback, we developed a deep convolutional neural network (CNN) aimed at demosaicing the color and near-infrared (NIR) channels, with its performance validated on both pre-clinical and clinical datasets.</p><p><strong>Aim: </strong>We introduce an optimized deep CNN designed for demosaicing both color and NIR images obtained using a hexachromatic imaging sensor.</p><p><strong>Approach: </strong>A residual CNN was fine-tuned and trained on a dataset of color images and subsequently assessed on a series of dual-channel, color, and NIR images to demonstrate its enhanced performance compared with traditional bilinear interpolation.</p><p><strong>Results: </strong>Our optimized CNN for demosaicing color and NIR images achieves a reduction in the mean square error by 37% for color and 40% for NIR, respectively, and enhances the structural dissimilarity index by 37% across both imaging modalities in pre-clinical data. In clinical datasets, the network improves the mean square error by 35% in color images and 42% in NIR images while enhancing the structural dissimilarity index by 39% in both imaging modalities.</p><p><strong>Conclusions: </strong>We showcase enhancements in image resolution for both color and NIR modalities through the use of an optimized CNN tailored for a hexachromatic image sensor. With the ongoing advancements in graphics card computational power, our approach delivers significant improvements in resolution that are feasible for real-time execution in surgical environments.</p>","PeriodicalId":15264,"journal":{"name":"Journal of Biomedical Optics","volume":"29 7","pages":"076005"},"PeriodicalIF":3.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11265532/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomedical Optics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1117/1.JBO.29.7.076005","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/23 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Significance: Single-chip imaging devices featuring vertically stacked photodiodes and pixelated spectral filters are advancing multi-dye imaging methods for cancer surgeries, though this innovation comes with a compromise in spatial resolution. To mitigate this drawback, we developed a deep convolutional neural network (CNN) aimed at demosaicing the color and near-infrared (NIR) channels, with its performance validated on both pre-clinical and clinical datasets.
Aim: We introduce an optimized deep CNN designed for demosaicing both color and NIR images obtained using a hexachromatic imaging sensor.
Approach: A residual CNN was fine-tuned and trained on a dataset of color images and subsequently assessed on a series of dual-channel, color, and NIR images to demonstrate its enhanced performance compared with traditional bilinear interpolation.
Results: Our optimized CNN for demosaicing color and NIR images achieves a reduction in the mean square error by 37% for color and 40% for NIR, respectively, and enhances the structural dissimilarity index by 37% across both imaging modalities in pre-clinical data. In clinical datasets, the network improves the mean square error by 35% in color images and 42% in NIR images while enhancing the structural dissimilarity index by 39% in both imaging modalities.
Conclusions: We showcase enhancements in image resolution for both color and NIR modalities through the use of an optimized CNN tailored for a hexachromatic image sensor. With the ongoing advancements in graphics card computational power, our approach delivers significant improvements in resolution that are feasible for real-time execution in surgical environments.
期刊介绍:
The Journal of Biomedical Optics publishes peer-reviewed papers on the use of modern optical technology for improved health care and biomedical research.