{"title":"Antioxidant and Anti-Inflammatory Activities of the Extract and Bioaccessible Fraction of Mango Peel in Muffins.","authors":"Yossaporn Plaitho, Aikkarach Kettawan, Hataichanok Sriprapai, Aurawan Kringkasemsee Kettawan, Phakpoom Kooprasertying","doi":"10.17113/ftb.62.02.24.8258","DOIUrl":null,"url":null,"abstract":"<p><strong>Research background: </strong>Mango peel is a production waste and can cause environmental problems, but its nutritional value consists of bioactive compounds that could be beneficial for human health. The aim of this study is to determine the bioactive compounds, antioxidant and anti-inflammatory activities of mango peels and their use in muffins.</p><p><strong>Experimental approach: </strong>The content of polyphenols, carotenoids and total phenols as well as the antioxidant activity of mango peel extract were evaluated. The anti-inflammatory activity of the extract was investigated using Caco-2 cell assay. The mango peel powder was then incorporated into muffin formulations. The sensory properties of these fortified muffins were evaluated. The total phenolic content, antioxidant activity and anti-inflammatory properties of the muffin extracts and their bioaccessible fractions were also analysed.</p><p><strong>Results and conclusions: </strong>The mango peel contained quercetin, phenolic compounds, α-carotene, β-carotene and lutein, which have antioxidant potential. In Caco-2 cells exposed to induced inflammation, the mango peel powder extract (<i>γ</i>=10, 50 and 100 µg/mL) attenuated the production of reactive oxygen species (ROS), tumour necrosis factor-alpha (TNF-α) and interleukin-8 (IL-8), while maintaining cell viability. Muffins supplemented with 5 % mango peel powder showed good sensory properties, but not as good as those of plain muffins without mango peel powder. The total phenolic content and antioxidant activities in both the extract and the bioaccessible fraction of the supplemented muffins were higher than those observed in the standard muffins. Moreover, the extract and bioaccessible fraction of the supplemented muffins resulted in a higher reduction of ROS, IL-8 and TNF-α production in Caco-2 cells than those obtained from the standard muffins.</p><p><strong>Novelty and scientific contribution: </strong>This study is the first to investigate the protective effects of mango peel and muffins supplemented with mango peel powder against IL-1β-induced oxidative damage in Caco-2 cells. The results confirm that both mango peel and the supplemented muffins inhibited the production of inflammatory markers, including ROS and cytokines. These findings suggest that mango peel could be a valuable component of functional food formulations including dietary supplements.</p>","PeriodicalId":12400,"journal":{"name":"Food Technology and Biotechnology","volume":"62 2","pages":"242-253"},"PeriodicalIF":2.3000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11261643/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Technology and Biotechnology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.17113/ftb.62.02.24.8258","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Research background: Mango peel is a production waste and can cause environmental problems, but its nutritional value consists of bioactive compounds that could be beneficial for human health. The aim of this study is to determine the bioactive compounds, antioxidant and anti-inflammatory activities of mango peels and their use in muffins.
Experimental approach: The content of polyphenols, carotenoids and total phenols as well as the antioxidant activity of mango peel extract were evaluated. The anti-inflammatory activity of the extract was investigated using Caco-2 cell assay. The mango peel powder was then incorporated into muffin formulations. The sensory properties of these fortified muffins were evaluated. The total phenolic content, antioxidant activity and anti-inflammatory properties of the muffin extracts and their bioaccessible fractions were also analysed.
Results and conclusions: The mango peel contained quercetin, phenolic compounds, α-carotene, β-carotene and lutein, which have antioxidant potential. In Caco-2 cells exposed to induced inflammation, the mango peel powder extract (γ=10, 50 and 100 µg/mL) attenuated the production of reactive oxygen species (ROS), tumour necrosis factor-alpha (TNF-α) and interleukin-8 (IL-8), while maintaining cell viability. Muffins supplemented with 5 % mango peel powder showed good sensory properties, but not as good as those of plain muffins without mango peel powder. The total phenolic content and antioxidant activities in both the extract and the bioaccessible fraction of the supplemented muffins were higher than those observed in the standard muffins. Moreover, the extract and bioaccessible fraction of the supplemented muffins resulted in a higher reduction of ROS, IL-8 and TNF-α production in Caco-2 cells than those obtained from the standard muffins.
Novelty and scientific contribution: This study is the first to investigate the protective effects of mango peel and muffins supplemented with mango peel powder against IL-1β-induced oxidative damage in Caco-2 cells. The results confirm that both mango peel and the supplemented muffins inhibited the production of inflammatory markers, including ROS and cytokines. These findings suggest that mango peel could be a valuable component of functional food formulations including dietary supplements.
期刊介绍:
Food Technology and Biotechnology (FTB) is a diamond open access, peer-reviewed international quarterly scientific journal that publishes papers covering a wide range of topics, including molecular biology, genetic engineering, biochemistry, microbiology, biochemical engineering and biotechnological processing, food science, analysis of food ingredients and final products, food processing and technology, oenology and waste treatment.
The Journal is published by the University of Zagreb, Faculty of Food Technology and Biotechnology, Croatia. It is an official journal of Croatian Society of Biotechnology and Slovenian Microbiological Society, financed by the Croatian Ministry of Science and Education, and supported by the Croatian Academy of Sciences and Arts.