Yi Zheng, Zhuomin Zhang, Yanhu Zhang, Qiqi Pan, Xiaodong Yan, Xuemu Li, Zhengbao Yang
{"title":"Enhancing Ultrasound Power Transfer: Efficiency, Acoustics, and Future Directions.","authors":"Yi Zheng, Zhuomin Zhang, Yanhu Zhang, Qiqi Pan, Xiaodong Yan, Xuemu Li, Zhengbao Yang","doi":"10.1002/adma.202407395","DOIUrl":null,"url":null,"abstract":"<p><p>Implantable medical devices (IMDs), like pacemakers regulating heart rhythm or deep brain stimulators treating neurological disorders, revolutionize healthcare. However, limited battery life necessitates frequent surgeries for replacements. Ultrasound power transfer (UPT) emerges as a promising solution for sustainable IMD operation. Current research prioritizes implantable materials, with less emphasis on sound field analysis and maximizing energy transfer during wireless power delivery. This review addresses this gap. A comprehensive analysis of UPT technology, examining cutting-edge system designs, particularly in power supply and efficiency is provided. The review critically examines existing efficiency models, summarizing the key parameters influencing energy transmission in UPT systems. For the first time, an energy flow diagram of a general UPT system is proposed to offer insights into the overall functioning. Additionally, the review explores the development stages of UPT technology, showcasing representative designs and applications. The remaining challenges, future directions, and exciting opportunities associated with UPT are discussed. By highlighting the importance of sustainable IMDs with advanced functions like biosensing and closed-loop drug delivery, as well as UPT's potential, this review aims to inspire further research and advancements in this promising field.</p>","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":" ","pages":"e2407395"},"PeriodicalIF":27.4000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202407395","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Implantable medical devices (IMDs), like pacemakers regulating heart rhythm or deep brain stimulators treating neurological disorders, revolutionize healthcare. However, limited battery life necessitates frequent surgeries for replacements. Ultrasound power transfer (UPT) emerges as a promising solution for sustainable IMD operation. Current research prioritizes implantable materials, with less emphasis on sound field analysis and maximizing energy transfer during wireless power delivery. This review addresses this gap. A comprehensive analysis of UPT technology, examining cutting-edge system designs, particularly in power supply and efficiency is provided. The review critically examines existing efficiency models, summarizing the key parameters influencing energy transmission in UPT systems. For the first time, an energy flow diagram of a general UPT system is proposed to offer insights into the overall functioning. Additionally, the review explores the development stages of UPT technology, showcasing representative designs and applications. The remaining challenges, future directions, and exciting opportunities associated with UPT are discussed. By highlighting the importance of sustainable IMDs with advanced functions like biosensing and closed-loop drug delivery, as well as UPT's potential, this review aims to inspire further research and advancements in this promising field.
期刊介绍:
Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.