The dual loss and gain of function of the FPN1 iron exporter results in the ferroportin disease phenotype.

IF 3.3 Q2 GENETICS & HEREDITY
HGG Advances Pub Date : 2024-10-10 Epub Date: 2024-07-22 DOI:10.1016/j.xhgg.2024.100335
Kevin Uguen, Marlène Le Tertre, Dimitri Tchernitchko, Ahmad Elbahnsi, Sandrine Maestri, Isabelle Gourlaouen, Claude Férec, Chandran Ka, Isabelle Callebaut, Gérald Le Gac
{"title":"The dual loss and gain of function of the FPN1 iron exporter results in the ferroportin disease phenotype.","authors":"Kevin Uguen, Marlène Le Tertre, Dimitri Tchernitchko, Ahmad Elbahnsi, Sandrine Maestri, Isabelle Gourlaouen, Claude Férec, Chandran Ka, Isabelle Callebaut, Gérald Le Gac","doi":"10.1016/j.xhgg.2024.100335","DOIUrl":null,"url":null,"abstract":"<p><p>Heterozygous mutations in SLC40A1, encoding a multi-pass membrane protein of the major facilitator superfamily known as ferroportin 1 (FPN1), are responsible for two distinct hereditary iron-overload diseases: ferroportin disease, which is associated with reduced FPN1 activity (i.e., decrease in cellular iron export), and SLC40A1-related hemochromatosis, which is associated with abnormally high FPN1 activity (i.e., resistance to hepcidin). Here, we report three SLC40A1 missense variants with opposite functional consequences. In cultured cells, the p.Arg40Gln and p.Ser47Phe substitutions partially reduced the ability of FPN1 to export iron and also partially reduced its sensitivity to hepcidin. The p.Ala350Val substitution had more profound effects, resulting in low FPN1 iron egress and weak FPN1/hepcidin interaction. Structural analyses helped to differentiate the first two substitutions, which are predicted to cause local instabilities, and the third, which is thought to prevent critical rigid-body movements that are essential to the iron transport cycle. The phenotypic traits observed in a total of 12 affected individuals are highly suggestive of ferroportin disease. Our findings dismantle the classical dualism of FPN1 loss versus gain of function, highlight some specific and unexpected functions of FPN1 transmembrane helices in the molecular mechanism of iron export and its regulation by hepcidin, and extend the spectrum of rare genetic variants that may cause ferroportin disease.</p>","PeriodicalId":34530,"journal":{"name":"HGG Advances","volume":" ","pages":"100335"},"PeriodicalIF":3.3000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11343060/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"HGG Advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.xhgg.2024.100335","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/22 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Heterozygous mutations in SLC40A1, encoding a multi-pass membrane protein of the major facilitator superfamily known as ferroportin 1 (FPN1), are responsible for two distinct hereditary iron-overload diseases: ferroportin disease, which is associated with reduced FPN1 activity (i.e., decrease in cellular iron export), and SLC40A1-related hemochromatosis, which is associated with abnormally high FPN1 activity (i.e., resistance to hepcidin). Here, we report three SLC40A1 missense variants with opposite functional consequences. In cultured cells, the p.Arg40Gln and p.Ser47Phe substitutions partially reduced the ability of FPN1 to export iron and also partially reduced its sensitivity to hepcidin. The p.Ala350Val substitution had more profound effects, resulting in low FPN1 iron egress and weak FPN1/hepcidin interaction. Structural analyses helped to differentiate the first two substitutions, which are predicted to cause local instabilities, and the third, which is thought to prevent critical rigid-body movements that are essential to the iron transport cycle. The phenotypic traits observed in a total of 12 affected individuals are highly suggestive of ferroportin disease. Our findings dismantle the classical dualism of FPN1 loss versus gain of function, highlight some specific and unexpected functions of FPN1 transmembrane helices in the molecular mechanism of iron export and its regulation by hepcidin, and extend the spectrum of rare genetic variants that may cause ferroportin disease.

FPN1 铁排出器功能的双重缺失和增益导致了铁蛋白病的表型。
SLC40A1编码一种称为铁蛋白1(FPN1)的主要促进剂超家族多通道膜蛋白,它的杂合突变是两种不同的遗传性铁超载疾病的罪魁祸首:铁蛋白病与FPN1活性降低(即细胞铁输出减少)有关;SLC40A1相关血色沉着病与FPN1活性异常高(即对肝素的抵抗)有关。在这里,我们报告了三种具有相反功能后果的 SLC40A1 错义变体。在培养细胞中,p.Arg40Gln 和 p.Ser47Phe 的置换部分降低了 FPN1 输出铁的能力,也部分降低了其对肝磷脂素的敏感性。p.Ala350Val置换的影响更为深远,导致FPN1铁输出量低,FPN1/血钙素相互作用弱。结构分析有助于区分前两个置换和第三个置换,前者预计会导致局部不稳定,后者则被认为会阻止对铁运输循环至关重要的关键刚体运动。在总共 12 个受影响的个体中观察到的表型特征高度提示了铁蛋白疾病。我们的研究结果打破了 FPN1 功能缺失与功能增益的经典二元论,强调了 FPN1 跨膜螺旋在铁输出的分子机制及其受肝磷脂蛋白调控方面的一些特殊和意想不到的功能,并扩展了可能导致铁皮质素疾病的罕见遗传变异的范围。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
HGG Advances
HGG Advances Biochemistry, Genetics and Molecular Biology-Molecular Medicine
CiteScore
4.30
自引率
4.50%
发文量
69
审稿时长
14 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信