Preserving isohydricity: vertical environmental variability explains Amazon forest water-use strategies.

IF 3.5 2区 农林科学 Q1 FORESTRY
Deliane Penha, Mauro Brum, Luciana F Alves, Tomas F Domingues, Anderson Meneses, Rardiles Branches, Natalia Restrepo-Coupe, Rafael S Oliveira, José Mauro S Moura, Pedro A C L Aurélio Pequeno, Neill Prohaska, Scott R Saleska
{"title":"Preserving isohydricity: vertical environmental variability explains Amazon forest water-use strategies.","authors":"Deliane Penha, Mauro Brum, Luciana F Alves, Tomas F Domingues, Anderson Meneses, Rardiles Branches, Natalia Restrepo-Coupe, Rafael S Oliveira, José Mauro S Moura, Pedro A C L Aurélio Pequeno, Neill Prohaska, Scott R Saleska","doi":"10.1093/treephys/tpae088","DOIUrl":null,"url":null,"abstract":"<p><p>Increases in hydrological extremes, including drought, are expected for Amazon forests. A fundamental challenge for predicting forest responses lies in identifying ecological strategies which underlie such responses. Characterization of species-specific hydraulic strategies for regulating water-use, thought to be arrayed along an 'isohydric-anisohydric' spectrum, is a widely used approach. However, recent studies have questioned the usefulness of this classification scheme, because its metrics are strongly influenced by environments, and hence can lead to divergent classifications even within the same species. Here, we propose an alternative approach positing that individual hydraulic regulation strategies emerge from the interaction of environments with traits. Specifically, we hypothesize that the vertical forest profile represents a key gradient in drought-related environments (atmospheric vapor pressure deficit, soil water availability) that drives divergent tree water-use strategies for coordinated regulation of stomatal conductance (gs) and leaf water potentials (ΨL) with tree rooting depth, a proxy for water availability. Testing this hypothesis in a seasonal eastern Amazon forest in Brazil, we found that hydraulic strategies indeed depend on height-associated environments. Upper canopy trees, experiencing high vapor pressure deficit (VPD), but stable soil water access through deep rooting, exhibited isohydric strategies, defined by little seasonal change in the diurnal pattern of gs and steady seasonal minimum ΨL. In contrast, understory trees, exposed to less variable VPD but highly variable soil water availability, exhibited anisohydric strategies, with fluctuations in diurnal gs that increased in the dry season along with increasing variation in ΨL. Our finding that canopy height structures the coordination between drought-related environmental stressors and hydraulic traits provides a basis for preserving the applicability of the isohydric-to-anisohydric spectrum, which we show here may consistently emerge from environmental context. Our work highlights the importance of understanding how environmental heterogeneity structures forest responses to climate change, providing a mechanistic basis for improving models of tropical ecosystems.</p>","PeriodicalId":23286,"journal":{"name":"Tree physiology","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tree physiology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1093/treephys/tpae088","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 0

Abstract

Increases in hydrological extremes, including drought, are expected for Amazon forests. A fundamental challenge for predicting forest responses lies in identifying ecological strategies which underlie such responses. Characterization of species-specific hydraulic strategies for regulating water-use, thought to be arrayed along an 'isohydric-anisohydric' spectrum, is a widely used approach. However, recent studies have questioned the usefulness of this classification scheme, because its metrics are strongly influenced by environments, and hence can lead to divergent classifications even within the same species. Here, we propose an alternative approach positing that individual hydraulic regulation strategies emerge from the interaction of environments with traits. Specifically, we hypothesize that the vertical forest profile represents a key gradient in drought-related environments (atmospheric vapor pressure deficit, soil water availability) that drives divergent tree water-use strategies for coordinated regulation of stomatal conductance (gs) and leaf water potentials (ΨL) with tree rooting depth, a proxy for water availability. Testing this hypothesis in a seasonal eastern Amazon forest in Brazil, we found that hydraulic strategies indeed depend on height-associated environments. Upper canopy trees, experiencing high vapor pressure deficit (VPD), but stable soil water access through deep rooting, exhibited isohydric strategies, defined by little seasonal change in the diurnal pattern of gs and steady seasonal minimum ΨL. In contrast, understory trees, exposed to less variable VPD but highly variable soil water availability, exhibited anisohydric strategies, with fluctuations in diurnal gs that increased in the dry season along with increasing variation in ΨL. Our finding that canopy height structures the coordination between drought-related environmental stressors and hydraulic traits provides a basis for preserving the applicability of the isohydric-to-anisohydric spectrum, which we show here may consistently emerge from environmental context. Our work highlights the importance of understanding how environmental heterogeneity structures forest responses to climate change, providing a mechanistic basis for improving models of tropical ecosystems.

保持等水性:垂直环境变化解释了亚马逊森林的用水策略。
亚马逊森林的极端水文情况(包括干旱)预计会加剧。预测森林应对措施的一个基本挑战在于确定这种应对措施的生态策略。物种调节用水的水力策略被认为是沿着 "等水力-无水力 "光谱排列的,这种方法被广泛使用。然而,最近的研究对这种分类方法的实用性提出了质疑,因为它的指标受环境影响很大,因此即使在同一物种中也会导致不同的分类。在这里,我们提出了另一种方法,即个体的水力调节策略产生于环境与性状的相互作用。具体来说,我们假设森林垂直剖面代表了干旱相关环境(大气蒸气压不足、土壤水分可用性)中的一个关键梯度,该梯度促使树木采用不同的水分利用策略来协调调节气孔导度(gs)和叶片水势(ΨL),而树木的根系深度则是水分可用性的代表。我们在巴西亚马逊东部的季节性森林中测试了这一假设,发现水力策略确实取决于高度相关的环境。树冠上部的树木VPD较高,但通过深根可以稳定地获得土壤水分,因此表现出等水力策略,即gs的昼夜模式几乎没有季节性变化,ΨL的季节性最小值保持稳定。相比之下,林下树木的VPD变化较小,但土壤水分供应量变化很大,因此表现出无水策略,昼夜gs的波动在旱季随着ΨL变化的增加而增加。我们发现,冠层高度构造了干旱相关环境胁迫因素与水力特征之间的协调,这为保持等水力到等水力光谱的适用性提供了基础,我们在此表明,等水力到等水力光谱可能会根据环境背景持续出现。我们的工作强调了了解环境异质性如何构建森林对气候变化的响应的重要性,为改进热带生态系统模型提供了机制基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Tree physiology
Tree physiology 农林科学-林学
CiteScore
7.10
自引率
7.50%
发文量
133
审稿时长
1 months
期刊介绍: Tree Physiology promotes research in a framework of hierarchically organized systems, measuring insight by the ability to link adjacent layers: thus, investigated tree physiology phenomenon should seek mechanistic explanation in finer-scale phenomena as well as seek significance in larger scale phenomena (Passioura 1979). A phenomenon not linked downscale is merely descriptive; an observation not linked upscale, might be trivial. Physiologists often refer qualitatively to processes at finer or coarser scale than the scale of their observation, and studies formally directed at three, or even two adjacent scales are rare. To emphasize the importance of relating mechanisms to coarser scale function, Tree Physiology will highlight papers doing so particularly well as feature papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信