{"title":"The Agonistic Activity of the Human Epidermal Growth Factor is Reduced by the D46G Substitution.","authors":"Anastasia Aleksandrovna Akunevich, Vladislav Victorovich Khrustalev, Tatyana Aleksandrovna Khrustaleva, Marina Anatolyevna Yermalovich","doi":"10.2174/0109298665297321240708044223","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Resistance to anti-tumor agents targeting the epidermal growth factor receptor (EGFR) reduces treatment response and requires the development of novel EGFR antagonists. Mutant epidermal growth factor (EGF) forms with reduced agonistic activity could be promising agents in cancer treatment.</p><p><strong>Methods: </strong>EGF D46G affinity to EGFR domain III was assessed with affinity chromatography. EGF D46G acute toxicity in Af albino mice at 320 and 3200 μg/kg subcutaneous doses was evaluated. EGF D46G activity in human epidermoid carcinoma cells at 10 ng/mL concentration in serum-free medium and in subcutaneous Ehrlich ascites carcinoma mice model at 320 μg/kg dose was studied.</p><p><strong>Results: </strong>The D46G substitution decreases the thermal stability of EGF complexes with EGFR domain III by decreasing the ability of the C-terminus to be released from the intermolecular β- sheet. However, with remaining binding sites for EGFR domain I, EGF D46G effectively competes with other EGF-like growth factors for binding to EGFR and does not demonstrate toxic effects in mice. EGF D46G inhibits the proliferation of human epidermoid carcinoma cells compared to native EGF. A single subcutaneous administration of EGF D46G along with Ehrlich carcinoma cells injection inhibits the proliferation of these cells and delays tumor formation for up to seven days.</p><p><strong>Conclusion: </strong>EGF D46G can be defined as a partial EGFR agonist as this mutant form demonstrates reduced agonistic activity compared to native EGF. The study emphasizes the role of the EGF C-terminus in establishing interactions with EGFR domain III, which are necessary for EGFR activation and subsequent proliferation of cells.</p>","PeriodicalId":20736,"journal":{"name":"Protein and Peptide Letters","volume":" ","pages":"504-518"},"PeriodicalIF":1.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Protein and Peptide Letters","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.2174/0109298665297321240708044223","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Resistance to anti-tumor agents targeting the epidermal growth factor receptor (EGFR) reduces treatment response and requires the development of novel EGFR antagonists. Mutant epidermal growth factor (EGF) forms with reduced agonistic activity could be promising agents in cancer treatment.
Methods: EGF D46G affinity to EGFR domain III was assessed with affinity chromatography. EGF D46G acute toxicity in Af albino mice at 320 and 3200 μg/kg subcutaneous doses was evaluated. EGF D46G activity in human epidermoid carcinoma cells at 10 ng/mL concentration in serum-free medium and in subcutaneous Ehrlich ascites carcinoma mice model at 320 μg/kg dose was studied.
Results: The D46G substitution decreases the thermal stability of EGF complexes with EGFR domain III by decreasing the ability of the C-terminus to be released from the intermolecular β- sheet. However, with remaining binding sites for EGFR domain I, EGF D46G effectively competes with other EGF-like growth factors for binding to EGFR and does not demonstrate toxic effects in mice. EGF D46G inhibits the proliferation of human epidermoid carcinoma cells compared to native EGF. A single subcutaneous administration of EGF D46G along with Ehrlich carcinoma cells injection inhibits the proliferation of these cells and delays tumor formation for up to seven days.
Conclusion: EGF D46G can be defined as a partial EGFR agonist as this mutant form demonstrates reduced agonistic activity compared to native EGF. The study emphasizes the role of the EGF C-terminus in establishing interactions with EGFR domain III, which are necessary for EGFR activation and subsequent proliferation of cells.
期刊介绍:
Protein & Peptide Letters publishes letters, original research papers, mini-reviews and guest edited issues in all important aspects of protein and peptide research, including structural studies, advances in recombinant expression, function, synthesis, enzymology, immunology, molecular modeling, and drug design. Manuscripts must have a significant element of novelty, timeliness and urgency that merit rapid publication. Reports of crystallization and preliminary structure determination of biologically important proteins are considered only if they include significant new approaches or deal with proteins of immediate importance, and preliminary structure determinations of biologically important proteins. Purely theoretical/review papers should provide new insight into the principles of protein/peptide structure and function. Manuscripts describing computational work should include some experimental data to provide confirmation of the results of calculations.
Protein & Peptide Letters focuses on:
Structure Studies
Advances in Recombinant Expression
Drug Design
Chemical Synthesis
Function
Pharmacology
Enzymology
Conformational Analysis
Immunology
Biotechnology
Protein Engineering
Protein Folding
Sequencing
Molecular Recognition
Purification and Analysis