Lóránt Szőke, Brigitta Tóth, Tomislav Javornik, Boris Lazarević
{"title":"Quantifying aluminum toxicity effects on corn phenotype using advanced imaging technologies.","authors":"Lóránt Szőke, Brigitta Tóth, Tomislav Javornik, Boris Lazarević","doi":"10.1002/pld3.623","DOIUrl":null,"url":null,"abstract":"<p><p>Soil acidity (pH <5.5) limits agricultural production due to aluminum (Al) toxicity. The primary target of Al toxicity is the plant root. However, symptoms can be observed on the shoots. This study aims to determine the potential use of chlorophyll fluorescence imaging, multispectral imaging, and 3D multispectral scanning technology to quantify the effects of Al toxicity on corn. Corn seedlings were grown for 13 days in nutrient solutions (pH 4.0) with four Al treatments: 50, 100, 200, and 400 μM and a control (0 μM AlCl<sub>3</sub> L<sup>-1</sup>). During the experiment, four measurements were performed: four (MT1), six (MT2), 11 (MT3), and 13 (MT4) days after the application of Al treatments. The most sensitive traits affected by Al toxicity were the reduction of plant growth and increased reflectance in the visible wavelength (affected at MT1). The reflectance of red wavelengths increased more significantly compared to near-infrared and green wavelengths, leading to a decrease in the normalized difference vegetation index and the Green Leaf Index. The most sensitive chlorophyll fluorescence traits, effective quantum yield of PSII, and photochemical quenching coefficient were affected after prolonged Al exposure (MT3). This study demonstrates the usability of selected phenotypic traits in remote sensing studies to map Al-toxic soils and in high-throughput phenotyping studies to screen Al-tolerant genotypes.</p>","PeriodicalId":20230,"journal":{"name":"Plant Direct","volume":"8 7","pages":"e623"},"PeriodicalIF":2.3000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11262852/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Direct","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/pld3.623","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Soil acidity (pH <5.5) limits agricultural production due to aluminum (Al) toxicity. The primary target of Al toxicity is the plant root. However, symptoms can be observed on the shoots. This study aims to determine the potential use of chlorophyll fluorescence imaging, multispectral imaging, and 3D multispectral scanning technology to quantify the effects of Al toxicity on corn. Corn seedlings were grown for 13 days in nutrient solutions (pH 4.0) with four Al treatments: 50, 100, 200, and 400 μM and a control (0 μM AlCl3 L-1). During the experiment, four measurements were performed: four (MT1), six (MT2), 11 (MT3), and 13 (MT4) days after the application of Al treatments. The most sensitive traits affected by Al toxicity were the reduction of plant growth and increased reflectance in the visible wavelength (affected at MT1). The reflectance of red wavelengths increased more significantly compared to near-infrared and green wavelengths, leading to a decrease in the normalized difference vegetation index and the Green Leaf Index. The most sensitive chlorophyll fluorescence traits, effective quantum yield of PSII, and photochemical quenching coefficient were affected after prolonged Al exposure (MT3). This study demonstrates the usability of selected phenotypic traits in remote sensing studies to map Al-toxic soils and in high-throughput phenotyping studies to screen Al-tolerant genotypes.
期刊介绍:
Plant Direct is a monthly, sound science journal for the plant sciences that gives prompt and equal consideration to papers reporting work dealing with a variety of subjects. Topics include but are not limited to genetics, biochemistry, development, cell biology, biotic stress, abiotic stress, genomics, phenomics, bioinformatics, physiology, molecular biology, and evolution. A collaborative journal launched by the American Society of Plant Biologists, the Society for Experimental Biology and Wiley, Plant Direct publishes papers submitted directly to the journal as well as those referred from a select group of the societies’ journals.