{"title":"Memantine alleviates cognitive impairment and hippocampal morphology injury in a mouse model of chronic alcohol exposure","authors":"","doi":"10.1016/j.pbb.2024.173827","DOIUrl":null,"url":null,"abstract":"<div><p>Alcohol-related cognitive impairment (ARCI) is highly prevalent among patients with alcohol abuse and dependence. The pathophysiology of ARCI, pivotal for refined therapeutic approaches, is not fully elucidated, posing a risk of progression to severe neurological sequelae such as Korsakoff's syndrome (KS) and Alcohol-Related Dementia (ARD). This study ventures into the underlying mechanisms of chronic alcohol-induced neurotoxicity, notably glutamate excitotoxicity and cytoskeletal disruption, and explores the therapeutic potential of Memantine, a non-competitive antagonist of the <em>N</em>-methyl-<span>d</span>-aspartate (NMDA) receptor known for its neuroprotective effect against excitotoxicity. Our investigation centers on the efficacy of Memantine in mitigating chronic alcohol-induced cognitive and hippocampal damages in vivo. Male C57BL/6J mice were subjected to 30 % (v/v, 6.0 g/kg) ethanol via intragastric administration alongside Memantine co-treatment (10 mg/kg/day, intraperitoneally) for six weeks. The assessment involved Y maze, Morris water maze, and novel object recognition tests to evaluate spatial and recognition memory deficits. Histopathological evaluations of the hippocampus were conducted to examine the extent of alcohol-induced morphological changes and the potential protective effect of Memantine. The findings reveal that Memantine significantly improves chronic alcohol-compromised cognitive functions and mitigates hippocampal pathological changes, implicating a moderating effect on the disassembly of actin cytoskeleton and microtubules in the hippocampus, induced by chronic alcohol exposure. Our results underscore Memantine's capability to attenuate chronic alcohol-induced cognitive and hippocampal morphological harm may partly through regulating cytoskeleton dynamics, offering valuable insights into innovative therapeutic strategies for ARCI.</p></div>","PeriodicalId":19893,"journal":{"name":"Pharmacology Biochemistry and Behavior","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmacology Biochemistry and Behavior","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0091305724001217","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Alcohol-related cognitive impairment (ARCI) is highly prevalent among patients with alcohol abuse and dependence. The pathophysiology of ARCI, pivotal for refined therapeutic approaches, is not fully elucidated, posing a risk of progression to severe neurological sequelae such as Korsakoff's syndrome (KS) and Alcohol-Related Dementia (ARD). This study ventures into the underlying mechanisms of chronic alcohol-induced neurotoxicity, notably glutamate excitotoxicity and cytoskeletal disruption, and explores the therapeutic potential of Memantine, a non-competitive antagonist of the N-methyl-d-aspartate (NMDA) receptor known for its neuroprotective effect against excitotoxicity. Our investigation centers on the efficacy of Memantine in mitigating chronic alcohol-induced cognitive and hippocampal damages in vivo. Male C57BL/6J mice were subjected to 30 % (v/v, 6.0 g/kg) ethanol via intragastric administration alongside Memantine co-treatment (10 mg/kg/day, intraperitoneally) for six weeks. The assessment involved Y maze, Morris water maze, and novel object recognition tests to evaluate spatial and recognition memory deficits. Histopathological evaluations of the hippocampus were conducted to examine the extent of alcohol-induced morphological changes and the potential protective effect of Memantine. The findings reveal that Memantine significantly improves chronic alcohol-compromised cognitive functions and mitigates hippocampal pathological changes, implicating a moderating effect on the disassembly of actin cytoskeleton and microtubules in the hippocampus, induced by chronic alcohol exposure. Our results underscore Memantine's capability to attenuate chronic alcohol-induced cognitive and hippocampal morphological harm may partly through regulating cytoskeleton dynamics, offering valuable insights into innovative therapeutic strategies for ARCI.
期刊介绍:
Pharmacology Biochemistry & Behavior publishes original reports in the areas of pharmacology and biochemistry in which the primary emphasis and theoretical context are behavioral. Contributions may involve clinical, preclinical, or basic research. Purely biochemical or toxicology studies will not be published. Papers describing the behavioral effects of novel drugs in models of psychiatric, neurological and cognitive disorders, and central pain must include a positive control unless the paper is on a disease where such a drug is not available yet. Papers focusing on physiological processes (e.g., peripheral pain mechanisms, body temperature regulation, seizure activity) are not accepted as we would like to retain the focus of Pharmacology Biochemistry & Behavior on behavior and its interaction with the biochemistry and neurochemistry of the central nervous system. Papers describing the effects of plant materials are generally not considered, unless the active ingredients are studied, the extraction method is well described, the doses tested are known, and clear and definite experimental evidence on the mechanism of action of the active ingredients is provided.