Targeting cellular adaptive responses to glutaminolysis perturbation for cancer therapy

IF 3.7 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Minjoong Kim, Sunsook Hwang, Seung Min Jeong
{"title":"Targeting cellular adaptive responses to glutaminolysis perturbation for cancer therapy","authors":"Minjoong Kim,&nbsp;Sunsook Hwang,&nbsp;Seung Min Jeong","doi":"10.1016/j.mocell.2024.100096","DOIUrl":null,"url":null,"abstract":"<div><p>Metabolic aberrations, notably deviations in glutamine metabolism, are crucial in the oncogenic process, offering vital resources for the unlimited proliferation and enhanced survival capabilities of cancer cells. The dependency of malignant cells on glutamine metabolism has led to the proposition of targeted therapeutic strategies. However, the capability of cancer cells to initiate adaptive responses undermines the efficacy of these therapeutic interventions. This review meticulously examines the multifaceted adaptive mechanisms that cancer cells deploy to sustain survival and growth following the disruption of glutamine metabolism. Emphasis is placed on the roles of transcription factors, alterations in metabolic pathways, the mechanistic target of rapamycin complex 1 signaling axis, autophagy, macropinocytosis, nucleotide biosynthesis, and the scavenging of ROS. Thus, the delineation and subsequent targeting of these adaptive responses in the context of therapies aimed at glutamine metabolism offer a promising avenue for circumventing drug resistance in cancer treatment.</p></div>","PeriodicalId":18795,"journal":{"name":"Molecules and Cells","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1016847824001213/pdfft?md5=e6c161f29f137350bdf3a5ceccb2d318&pid=1-s2.0-S1016847824001213-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecules and Cells","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1016847824001213","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Metabolic aberrations, notably deviations in glutamine metabolism, are crucial in the oncogenic process, offering vital resources for the unlimited proliferation and enhanced survival capabilities of cancer cells. The dependency of malignant cells on glutamine metabolism has led to the proposition of targeted therapeutic strategies. However, the capability of cancer cells to initiate adaptive responses undermines the efficacy of these therapeutic interventions. This review meticulously examines the multifaceted adaptive mechanisms that cancer cells deploy to sustain survival and growth following the disruption of glutamine metabolism. Emphasis is placed on the roles of transcription factors, alterations in metabolic pathways, the mechanistic target of rapamycin complex 1 signaling axis, autophagy, macropinocytosis, nucleotide biosynthesis, and the scavenging of ROS. Thus, the delineation and subsequent targeting of these adaptive responses in the context of therapies aimed at glutamine metabolism offer a promising avenue for circumventing drug resistance in cancer treatment.

针对细胞对谷氨酰胺分解干扰的适应性反应进行癌症治疗
代谢畸变,特别是谷氨酰胺代谢的偏差,在致癌过程中至关重要,为癌细胞的无限增殖和生存能力的提高提供了重要资源。恶性细胞对谷氨酰胺代谢的依赖性促使人们提出了靶向治疗策略。然而,癌细胞启动适应性反应的能力削弱了这些治疗干预措施的疗效。这篇综述细致研究了癌细胞在谷氨酰胺代谢被破坏后为维持生存和生长而部署的多方面适应机制。重点放在转录因子的作用、新陈代谢途径的改变、mTORC1 信号轴、自噬、巨细胞吞噬、核苷酸生物合成以及活性氧清除。因此,在以谷氨酰胺代谢为目标的疗法中,对这些适应性反应的界定和随后的靶向治疗为规避癌症治疗中的耐药性提供了一条前景广阔的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecules and Cells
Molecules and Cells 生物-生化与分子生物学
CiteScore
6.60
自引率
10.50%
发文量
83
审稿时长
2.3 months
期刊介绍: Molecules and Cells is an international on-line open-access journal devoted to the advancement and dissemination of fundamental knowledge in molecular and cellular biology. It was launched in 1990 and ISO abbreviation is ''Mol. Cells''. Reports on a broad range of topics of general interest to molecular and cell biologists are published. It is published on the last day of each month by the Korean Society for Molecular and Cellular Biology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信