Patrick Videau, Maximillian D. Shlafstein, David K. Oline, Scott A. Givan, Linda Fleet Chapman, Wendy K. Strangman, Richard L. Hahnke, Jimmy H. Saw, Blake Ushijima
{"title":"Genome-based taxonomic analysis of the genus Pseudoalteromonas reveals heterotypic synonyms","authors":"Patrick Videau, Maximillian D. Shlafstein, David K. Oline, Scott A. Givan, Linda Fleet Chapman, Wendy K. Strangman, Richard L. Hahnke, Jimmy H. Saw, Blake Ushijima","doi":"10.1111/1462-2920.16672","DOIUrl":null,"url":null,"abstract":"<p>The <i>Pseudoalteromonas</i> genus comprises members that have been demonstrated to play significant ecological roles and produce enzymes, natural products, and activities that are beneficial to the environment and economy. A comprehensive evaluation of the genus revealed that the genomes of several <i>Pseudoalteromonas</i> species are highly similar to each other, exceeding species cutoff values. This evaluation involved determining and comparing the average nucleotide identity, in silico DNA–DNA hybridization, average amino acid identity, and the difference in G + C% between <i>Pseudoalteromonas</i> type strains with publicly available genomes. The genome of the <i>Pseudoalteromonas elyakovii</i> type strain was further assessed through additional sequencing and genomic comparisons to historical sequences. These findings suggest that six <i>Pseudoalteromonas</i> species, namely <i>P. mariniglutinosa</i>, <i>P. donghaensis</i>, <i>P. maricaloris</i>, <i>P. elyakovii</i>, <i>P. profundi</i>, and <i>P. issachenkonii</i>, should be reclassified as later heterotypic synonyms of the following validly published species: <i>P. haloplanktis</i>, <i>P. lipolytica</i>, <i>P. flavipulchra</i>, <i>P. distincta</i>, <i>P. gelatinilytica</i>, and <i>P. tetraodonis</i>. Furthermore, two names without valid standing, ‘<i>P. telluritireducens</i>’ and ‘<i>P. spiralis</i>’, should be associated with the validly published <i>Pseudoalteromonas</i> species <i>P. agarivorans</i> and <i>P. tetraodonis</i>, respectively.</p>","PeriodicalId":11898,"journal":{"name":"Environmental microbiology","volume":"26 7","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1462-2920.16672","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental microbiology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1462-2920.16672","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The Pseudoalteromonas genus comprises members that have been demonstrated to play significant ecological roles and produce enzymes, natural products, and activities that are beneficial to the environment and economy. A comprehensive evaluation of the genus revealed that the genomes of several Pseudoalteromonas species are highly similar to each other, exceeding species cutoff values. This evaluation involved determining and comparing the average nucleotide identity, in silico DNA–DNA hybridization, average amino acid identity, and the difference in G + C% between Pseudoalteromonas type strains with publicly available genomes. The genome of the Pseudoalteromonas elyakovii type strain was further assessed through additional sequencing and genomic comparisons to historical sequences. These findings suggest that six Pseudoalteromonas species, namely P. mariniglutinosa, P. donghaensis, P. maricaloris, P. elyakovii, P. profundi, and P. issachenkonii, should be reclassified as later heterotypic synonyms of the following validly published species: P. haloplanktis, P. lipolytica, P. flavipulchra, P. distincta, P. gelatinilytica, and P. tetraodonis. Furthermore, two names without valid standing, ‘P. telluritireducens’ and ‘P. spiralis’, should be associated with the validly published Pseudoalteromonas species P. agarivorans and P. tetraodonis, respectively.
期刊介绍:
Environmental Microbiology provides a high profile vehicle for publication of the most innovative, original and rigorous research in the field. The scope of the Journal encompasses the diversity of current research on microbial processes in the environment, microbial communities, interactions and evolution and includes, but is not limited to, the following:
the structure, activities and communal behaviour of microbial communities
microbial community genetics and evolutionary processes
microbial symbioses, microbial interactions and interactions with plants, animals and abiotic factors
microbes in the tree of life, microbial diversification and evolution
population biology and clonal structure
microbial metabolic and structural diversity
microbial physiology, growth and survival
microbes and surfaces, adhesion and biofouling
responses to environmental signals and stress factors
modelling and theory development
pollution microbiology
extremophiles and life in extreme and unusual little-explored habitats
element cycles and biogeochemical processes, primary and secondary production
microbes in a changing world, microbially-influenced global changes
evolution and diversity of archaeal and bacterial viruses
new technological developments in microbial ecology and evolution, in particular for the study of activities of microbial communities, non-culturable microorganisms and emerging pathogens