Human papillomavirus-16 E6-positive cervical cancer attenuated by potent 2-(4-biphenylyl)-N-(1-ethyl-4-piperidinyl) acetamide second-generation analogs with improved binding affinity.
{"title":"Human papillomavirus-16 E6-positive cervical cancer attenuated by potent 2-(4-biphenylyl)-N-(1-ethyl-4-piperidinyl) acetamide second-generation analogs with improved binding affinity.","authors":"Ashish Kumar","doi":"10.1002/bab.2639","DOIUrl":null,"url":null,"abstract":"<p><p>Human papillomavirus (HPV) infection, particularly HPV16, is a major contributor to the development of cervical cancer. Given the urgent need for novel therapeutic strategies targeting HPV-associated cancers, this study focuses on characterizing second-generation analogs of a lead compound, as a potential inhibitor of HPV16-E6. Protein-ligand docking, Gibbs binding free energy estimation, and molecular dynamics simulations were conducted. HPV16-infected SiHa and CaSki cell lines were used. MTT (3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide) assay for proliferation and flow cytometry for target inhibition and apoptosis were employed. Computational and cell proliferation analyses revealed that modifications to E6-855, particularly in the piperidinyl group, enhanced binding affinities against HPV16-E6, with E6-272 demonstrating superior binding properties. Molecular dynamics simulations confirmed the stable binding of E6-272 to HPV16-E6, supported by favorable binding energy estimates. E6-272 inhibited the proliferation of SiHa and CaSki cells with GI<sub>50</sub> values of 32.56 and 62.09 nM, respectively. The compound reduced HPV16-E6-positive population, while inducing the early and late phase apoptosis in these cells. Structural alterations at the piperidinyl group of E6-855 identified E6-272 as a promising inhibitor of HPV16-E6 with improved efficacy against HPV16-E6. Further experimental validation of E6-272 and its analogs warrant to advance its clinical utility in combating HPV-associated cancers.</p>","PeriodicalId":9274,"journal":{"name":"Biotechnology and applied biochemistry","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology and applied biochemistry","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/bab.2639","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Human papillomavirus (HPV) infection, particularly HPV16, is a major contributor to the development of cervical cancer. Given the urgent need for novel therapeutic strategies targeting HPV-associated cancers, this study focuses on characterizing second-generation analogs of a lead compound, as a potential inhibitor of HPV16-E6. Protein-ligand docking, Gibbs binding free energy estimation, and molecular dynamics simulations were conducted. HPV16-infected SiHa and CaSki cell lines were used. MTT (3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide) assay for proliferation and flow cytometry for target inhibition and apoptosis were employed. Computational and cell proliferation analyses revealed that modifications to E6-855, particularly in the piperidinyl group, enhanced binding affinities against HPV16-E6, with E6-272 demonstrating superior binding properties. Molecular dynamics simulations confirmed the stable binding of E6-272 to HPV16-E6, supported by favorable binding energy estimates. E6-272 inhibited the proliferation of SiHa and CaSki cells with GI50 values of 32.56 and 62.09 nM, respectively. The compound reduced HPV16-E6-positive population, while inducing the early and late phase apoptosis in these cells. Structural alterations at the piperidinyl group of E6-855 identified E6-272 as a promising inhibitor of HPV16-E6 with improved efficacy against HPV16-E6. Further experimental validation of E6-272 and its analogs warrant to advance its clinical utility in combating HPV-associated cancers.
期刊介绍:
Published since 1979, Biotechnology and Applied Biochemistry is dedicated to the rapid publication of high quality, significant research at the interface between life sciences and their technological exploitation.
The Editors will consider papers for publication based on their novelty and impact as well as their contribution to the advancement of medical biotechnology and industrial biotechnology, covering cutting-edge research in synthetic biology, systems biology, metabolic engineering, bioengineering, biomaterials, biosensing, and nano-biotechnology.