Amanda C Walls, Manon van Vegchel, Abigail Lakey, Hemali Gauri, Joshua Dixon, Laís A Ferreira, Ishita Tandon, Kartik Balachandran
{"title":"A nasal airway-on-chip model to evaluate airflow pre-conditioning during epithelial cell maturation at the air-liquid interface.","authors":"Amanda C Walls, Manon van Vegchel, Abigail Lakey, Hemali Gauri, Joshua Dixon, Laís A Ferreira, Ishita Tandon, Kartik Balachandran","doi":"10.1088/1758-5090/ad663d","DOIUrl":null,"url":null,"abstract":"<p><p>The function of a well-differentiated nasal epithelium is largely affected by airflow-induced wall shear stress, yet few<i>in vitro</i>models recapitulate this dynamic condition. Models which do expose cells to airflow exclusively initiate flow after the differentiation process has occurred.<i>In vivo</i>, basal cells are constantly replenishing the epithelium under airflow conditions, indicating that airflow may affect the development and function of the differentiated epithelium. To address this gap in the field, we developed a physiologically relevant microphysiological model of the human nasal epithelium and investigated the effects of exposing cells to airflow during epithelial maturation at the air-liquid interface. The nasal airway-on-chip platform was engineered to mimic bi-directional physiological airflow during normal breathing. Primary human nasal epithelial cells were seeded on chips and subjected to either: (1) no flow, (2) single flow (0.5 dyne cm<sup>-2</sup>flow on Day 21 of ALI only), or (3) pre-conditioning flow (0.05 dyne cm<sup>-2</sup>on Days 14-20 and 0.5 dyne cm<sup>-2</sup>flow on Day 21) treatments. Cells exposed to pre-conditioning showed decreased morphological changes and mucus secretions, as well as decreased inflammation, compared to unconditioned cells. Our results indicate that flow exposure only post-differentiation may impose acute stress on cells, while pre-conditioning may potentiate a properly functioning epithelium<i>in vitro</i>.</p>","PeriodicalId":8964,"journal":{"name":"Biofabrication","volume":" ","pages":""},"PeriodicalIF":8.2000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biofabrication","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1758-5090/ad663d","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The function of a well-differentiated nasal epithelium is largely affected by airflow-induced wall shear stress, yet fewin vitromodels recapitulate this dynamic condition. Models which do expose cells to airflow exclusively initiate flow after the differentiation process has occurred.In vivo, basal cells are constantly replenishing the epithelium under airflow conditions, indicating that airflow may affect the development and function of the differentiated epithelium. To address this gap in the field, we developed a physiologically relevant microphysiological model of the human nasal epithelium and investigated the effects of exposing cells to airflow during epithelial maturation at the air-liquid interface. The nasal airway-on-chip platform was engineered to mimic bi-directional physiological airflow during normal breathing. Primary human nasal epithelial cells were seeded on chips and subjected to either: (1) no flow, (2) single flow (0.5 dyne cm-2flow on Day 21 of ALI only), or (3) pre-conditioning flow (0.05 dyne cm-2on Days 14-20 and 0.5 dyne cm-2flow on Day 21) treatments. Cells exposed to pre-conditioning showed decreased morphological changes and mucus secretions, as well as decreased inflammation, compared to unconditioned cells. Our results indicate that flow exposure only post-differentiation may impose acute stress on cells, while pre-conditioning may potentiate a properly functioning epitheliumin vitro.
期刊介绍:
Biofabrication is dedicated to advancing cutting-edge research on the utilization of cells, proteins, biological materials, and biomaterials as fundamental components for the construction of biological systems and/or therapeutic products. Additionally, it proudly serves as the official journal of the International Society for Biofabrication (ISBF).