{"title":"Application of hybrid SSVEP + P300 brain computer interface to control avatar movement in mobile virtual reality gaming environment","authors":"","doi":"10.1016/j.bbr.2024.115154","DOIUrl":null,"url":null,"abstract":"<div><h3>Introduction</h3><p>This research evaluated the feasibility of a hybrid SSVEP + P300 brain computer interface (BCI) for controlling the movement of an avatar in a virtual reality (VR) gaming environment (VR + BCI). Existing VR + BCI gaming environments have limitations, such as visual fatigue, a lower communication rate, minimum accuracy, and poor system comfort. Hence, there is a need for an optimized hybrid BCI system that can simultaneously evoke the strongest P300 and SSVEP potentials in the cortex.</p></div><div><h3>Methods</h3><p>A BCI headset was coupled with a VR headset to generate a VR + BCI environment. The author developed a VR game in which the avatar’s movement is controlled using the user's cortical responses with the help of a BCI headset. Specifically designed visual stimuli were used in the proposed system to elicit the strongest possible responses from the user's brain. The proposed system also includes an auditory feedback mechanism to facilitate precise avatar movement.</p></div><div><h3>Results and conclusions</h3><p>Conventional P300 BCI and SSVEP BCI were also used to control the movements of the avatar, and their performance metrics were compared to those of the proposed system. The results demonstrated that the hybrid SSVEP + P300 BCI system was superior to the other systems for controlling avatar movement.</p></div>","PeriodicalId":8823,"journal":{"name":"Behavioural Brain Research","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Behavioural Brain Research","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166432824003103","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction
This research evaluated the feasibility of a hybrid SSVEP + P300 brain computer interface (BCI) for controlling the movement of an avatar in a virtual reality (VR) gaming environment (VR + BCI). Existing VR + BCI gaming environments have limitations, such as visual fatigue, a lower communication rate, minimum accuracy, and poor system comfort. Hence, there is a need for an optimized hybrid BCI system that can simultaneously evoke the strongest P300 and SSVEP potentials in the cortex.
Methods
A BCI headset was coupled with a VR headset to generate a VR + BCI environment. The author developed a VR game in which the avatar’s movement is controlled using the user's cortical responses with the help of a BCI headset. Specifically designed visual stimuli were used in the proposed system to elicit the strongest possible responses from the user's brain. The proposed system also includes an auditory feedback mechanism to facilitate precise avatar movement.
Results and conclusions
Conventional P300 BCI and SSVEP BCI were also used to control the movements of the avatar, and their performance metrics were compared to those of the proposed system. The results demonstrated that the hybrid SSVEP + P300 BCI system was superior to the other systems for controlling avatar movement.
期刊介绍:
Behavioural Brain Research is an international, interdisciplinary journal dedicated to the publication of articles in the field of behavioural neuroscience, broadly defined. Contributions from the entire range of disciplines that comprise the neurosciences, behavioural sciences or cognitive sciences are appropriate, as long as the goal is to delineate the neural mechanisms underlying behaviour. Thus, studies may range from neurophysiological, neuroanatomical, neurochemical or neuropharmacological analysis of brain-behaviour relations, including the use of molecular genetic or behavioural genetic approaches, to studies that involve the use of brain imaging techniques, to neuroethological studies. Reports of original research, of major methodological advances, or of novel conceptual approaches are all encouraged. The journal will also consider critical reviews on selected topics.