Ameliorative effect of pedunculoside on sepsis-induced acute lung injury, inflammation and pulmonary fibrosis in mice model via suppressing AKT/NF-κB pathway
{"title":"Ameliorative effect of pedunculoside on sepsis-induced acute lung injury, inflammation and pulmonary fibrosis in mice model via suppressing AKT/NF-κB pathway","authors":"Xiangbo Li, Ruiming Xu, Kaiguo Zhou, Qiumei Cao","doi":"10.1007/s10735-024-10222-4","DOIUrl":null,"url":null,"abstract":"<div><h3>Background/Objectives</h3><p>Sepsis-induced acute lung injury (ALI) is the typical complications of sepsis with a high global incidence and mortality. Inhibition of inflammatory response is a crucial and effective strategy for sepsis-induced ALI. Pedunculoside (PE) has been shown to have an anti-inflammatory effect on various diseases. However, the effect and mechanism of PE on sepsis-induced ALI remain unknown.</p><h3>Materials/Methods</h3><p>A mice model of sepsis-induced ALI was constructed by cecal ligation and puncture (CLP). The effect of PE on the CLP-induced mice were assessed using pathological staining, terminal deoxynucleotidyl transferase deoxyuridine triphosphate (dUTP) nick end labeling (TUNEL), reverse transcription quantitative polymerase chain reaction (RT-qPCR), enzyme-linked immunosorbent assay (ELISA) and western blot assays.</p><h3>Results</h3><p>PE reduced pathological symptoms and scores, apoptosis and the W/D ratio of lung tissues in CLP-induced mice. Besides, PE decreased the level of interleukin (IL)-1β, IL-6 and tumor necrosis factor (TNF)-α), pulmonary fibrosis and the expression of fibrosis markers. Mechanically, PE inhibited AKT/NF-κB signaling in CLP-induced mice. Activation of AKT/NF-κB pathway abolished the ameliorative effect of PE on the pathological symptoms, the release of inflammatory factors and pulmonary fibrosis of CLP-induced mice.</p><h3>Conclusion</h3><p>PE improved inflammation and pulmonary fibrosis by inhibiting AKT/NF-κB pathway in CLP-induced mice.</p></div>","PeriodicalId":650,"journal":{"name":"Journal of Molecular Histology","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Histology","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s10735-024-10222-4","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background/Objectives
Sepsis-induced acute lung injury (ALI) is the typical complications of sepsis with a high global incidence and mortality. Inhibition of inflammatory response is a crucial and effective strategy for sepsis-induced ALI. Pedunculoside (PE) has been shown to have an anti-inflammatory effect on various diseases. However, the effect and mechanism of PE on sepsis-induced ALI remain unknown.
Materials/Methods
A mice model of sepsis-induced ALI was constructed by cecal ligation and puncture (CLP). The effect of PE on the CLP-induced mice were assessed using pathological staining, terminal deoxynucleotidyl transferase deoxyuridine triphosphate (dUTP) nick end labeling (TUNEL), reverse transcription quantitative polymerase chain reaction (RT-qPCR), enzyme-linked immunosorbent assay (ELISA) and western blot assays.
Results
PE reduced pathological symptoms and scores, apoptosis and the W/D ratio of lung tissues in CLP-induced mice. Besides, PE decreased the level of interleukin (IL)-1β, IL-6 and tumor necrosis factor (TNF)-α), pulmonary fibrosis and the expression of fibrosis markers. Mechanically, PE inhibited AKT/NF-κB signaling in CLP-induced mice. Activation of AKT/NF-κB pathway abolished the ameliorative effect of PE on the pathological symptoms, the release of inflammatory factors and pulmonary fibrosis of CLP-induced mice.
Conclusion
PE improved inflammation and pulmonary fibrosis by inhibiting AKT/NF-κB pathway in CLP-induced mice.
期刊介绍:
The Journal of Molecular Histology publishes results of original research on the localization and expression of molecules in animal cells, tissues and organs. Coverage includes studies describing novel cellular or ultrastructural distributions of molecules which provide insight into biochemical or physiological function, development, histologic structure and disease processes.
Major research themes of particular interest include:
- Cell-Cell and Cell-Matrix Interactions;
- Connective Tissues;
- Development and Disease;
- Neuroscience.
Please note that the Journal of Molecular Histology does not consider manuscripts dealing with the application of immunological or other probes on non-standard laboratory animal models unless the results are clearly of significant and general biological importance.
The Journal of Molecular Histology publishes full-length original research papers, review articles, short communications and letters to the editors. All manuscripts are typically reviewed by two independent referees. The Journal of Molecular Histology is a continuation of The Histochemical Journal.