{"title":"Knockdown of CPSF4 Inhibits Bladder Cancer Cell Growth by Upregulating NRF1.","authors":"Yixiang Sun, Guanglei Li, Hanlin Zhang, Mao Xie","doi":"10.1007/s10528-024-10891-6","DOIUrl":null,"url":null,"abstract":"<p><p>Increasing studies have shown that nuclear respiratory factor 1 (NRF1) deficiency frequently occurs in many human diseases, and its activation can protect neurons and other cells from degenerative diseases and malignant tumors. However, how NRF1 is regulated in bladder cancer remains unknown. Our research aims to reveal the role of leavage and polyadenylation-specific factor 4 (CPSF4) on the growth inhibition effect of bladder cancer and clarify its relationship with NRF1. Here, cell proliferation assay, transwell migration assay and multicellular tumor spheroids (MCTS) formation assay in the bladder cancer cell lines were carried out to measure tumor cell growth. Western bolt assay was carried out to identify the relationship between NRF1 and CPSF4. Also, subcutaneous xenograft tumors in nude mice were established to further validate the inhibition effect of CPSF4 on bladder tumor and the regulation on NRF1. The results in vitro showed that knockdown of CPSF4 strongly reduced the proliferation and migration, and inhibited MCTS formation in 5637 and HT1376 cell lines, while an additional knockdown of increased NRF1 induced by CPSF4 knockdown partially abolished these effects. The results in vivo showed that knockdown of CPSF4 strongly reduced the volume and weight of subcutaneous tumor, and decreased the expression of Ki-67 in tumor tissue, while NRF1 knockdown partially reversed these effects induced by CPSF4 knockdown. Western bolt assay demonstrated that CPSF4 could negatively regulate NRF1. Our results indicated that knock-down of CPSF4 inhibited bladder cancer cell growth by upregulating NRF1, which might provide evidence of CPSF4 as a therapeutic target for bladder cancer.</p>","PeriodicalId":482,"journal":{"name":"Biochemical Genetics","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10528-024-10891-6","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Increasing studies have shown that nuclear respiratory factor 1 (NRF1) deficiency frequently occurs in many human diseases, and its activation can protect neurons and other cells from degenerative diseases and malignant tumors. However, how NRF1 is regulated in bladder cancer remains unknown. Our research aims to reveal the role of leavage and polyadenylation-specific factor 4 (CPSF4) on the growth inhibition effect of bladder cancer and clarify its relationship with NRF1. Here, cell proliferation assay, transwell migration assay and multicellular tumor spheroids (MCTS) formation assay in the bladder cancer cell lines were carried out to measure tumor cell growth. Western bolt assay was carried out to identify the relationship between NRF1 and CPSF4. Also, subcutaneous xenograft tumors in nude mice were established to further validate the inhibition effect of CPSF4 on bladder tumor and the regulation on NRF1. The results in vitro showed that knockdown of CPSF4 strongly reduced the proliferation and migration, and inhibited MCTS formation in 5637 and HT1376 cell lines, while an additional knockdown of increased NRF1 induced by CPSF4 knockdown partially abolished these effects. The results in vivo showed that knockdown of CPSF4 strongly reduced the volume and weight of subcutaneous tumor, and decreased the expression of Ki-67 in tumor tissue, while NRF1 knockdown partially reversed these effects induced by CPSF4 knockdown. Western bolt assay demonstrated that CPSF4 could negatively regulate NRF1. Our results indicated that knock-down of CPSF4 inhibited bladder cancer cell growth by upregulating NRF1, which might provide evidence of CPSF4 as a therapeutic target for bladder cancer.
期刊介绍:
Biochemical Genetics welcomes original manuscripts that address and test clear scientific hypotheses, are directed to a broad scientific audience, and clearly contribute to the advancement of the field through the use of sound sampling or experimental design, reliable analytical methodologies and robust statistical analyses.
Although studies focusing on particular regions and target organisms are welcome, it is not the journal’s goal to publish essentially descriptive studies that provide results with narrow applicability, or are based on very small samples or pseudoreplication.
Rather, Biochemical Genetics welcomes review articles that go beyond summarizing previous publications and create added value through the systematic analysis and critique of the current state of knowledge or by conducting meta-analyses.
Methodological articles are also within the scope of Biological Genetics, particularly when new laboratory techniques or computational approaches are fully described and thoroughly compared with the existing benchmark methods.
Biochemical Genetics welcomes articles on the following topics: Genomics; Proteomics; Population genetics; Phylogenetics; Metagenomics; Microbial genetics; Genetics and evolution of wild and cultivated plants; Animal genetics and evolution; Human genetics and evolution; Genetic disorders; Genetic markers of diseases; Gene technology and therapy; Experimental and analytical methods; Statistical and computational methods.