{"title":"Assessment of Pathogenic Variants in the PAH Gene and Genotype-Phenotype Correlation in Phenylketonuria Patients from Turkey.","authors":"Özgür Balasar, Banu Kadıoğlu Yılmaz, Müşerref Başdemirci, Hatice Koçak Eker, Büşra Eser Çavdartepe, Levent Şimşek, Ebru Tunçez, Fahrettin Duymuş","doi":"10.1007/s10528-024-10892-5","DOIUrl":null,"url":null,"abstract":"<p><p>This study aims to determine the allele and genotype frequency, evaluate genotype-phenotype correlation and contribute to the spectrum of pathogenic variants in the PAH gene. Ninety-three individuals diagnosed with PKU were included in the study. Next-generation sequencing was utilized for detecting variants in the PAH gene. Copy Number Variations in patients without biallelic pathogenic variant were investigated by Multiplex Ligation-dependent Probe Amplification method. Genotype-phenotype correlations and genotype-based phenotype predictions were examined by comparing molecular test results with BIOPKUdb database. The clinical distributions of the patients were as follows: classic PKU 21% (n = 19), mild PKU 3% (n = 3), and mild hyperphenylalaninemia 76% (n = 71), respectively. Thirty-nine distinct variants and 70 distinct genotypes were found in patients. The most frequently observed variant was p.(Ala300Ser) (13.9%) and the most frequently observed genotype was p.[Ala300Ser];[Ala300Ser] (5.6%). Compound heterozygous genotypes (%69) were more prevalent than homozygous genotypes. A novel variant, c.441+4A>C, was observed. Predicted metabolic phenotypes in the database showed consistency with patient phenotypes (n = 33/41). BH4 responsiveness showed partial consistency with database predictions (n = 13/25). Establishing genotype-phenotype correlations can facilitate personalized management approaches. Overall, this study contributes to understanding the genetic basis and clinical course of PKU.</p>","PeriodicalId":482,"journal":{"name":"Biochemical Genetics","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10528-024-10892-5","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This study aims to determine the allele and genotype frequency, evaluate genotype-phenotype correlation and contribute to the spectrum of pathogenic variants in the PAH gene. Ninety-three individuals diagnosed with PKU were included in the study. Next-generation sequencing was utilized for detecting variants in the PAH gene. Copy Number Variations in patients without biallelic pathogenic variant were investigated by Multiplex Ligation-dependent Probe Amplification method. Genotype-phenotype correlations and genotype-based phenotype predictions were examined by comparing molecular test results with BIOPKUdb database. The clinical distributions of the patients were as follows: classic PKU 21% (n = 19), mild PKU 3% (n = 3), and mild hyperphenylalaninemia 76% (n = 71), respectively. Thirty-nine distinct variants and 70 distinct genotypes were found in patients. The most frequently observed variant was p.(Ala300Ser) (13.9%) and the most frequently observed genotype was p.[Ala300Ser];[Ala300Ser] (5.6%). Compound heterozygous genotypes (%69) were more prevalent than homozygous genotypes. A novel variant, c.441+4A>C, was observed. Predicted metabolic phenotypes in the database showed consistency with patient phenotypes (n = 33/41). BH4 responsiveness showed partial consistency with database predictions (n = 13/25). Establishing genotype-phenotype correlations can facilitate personalized management approaches. Overall, this study contributes to understanding the genetic basis and clinical course of PKU.
期刊介绍:
Biochemical Genetics welcomes original manuscripts that address and test clear scientific hypotheses, are directed to a broad scientific audience, and clearly contribute to the advancement of the field through the use of sound sampling or experimental design, reliable analytical methodologies and robust statistical analyses.
Although studies focusing on particular regions and target organisms are welcome, it is not the journal’s goal to publish essentially descriptive studies that provide results with narrow applicability, or are based on very small samples or pseudoreplication.
Rather, Biochemical Genetics welcomes review articles that go beyond summarizing previous publications and create added value through the systematic analysis and critique of the current state of knowledge or by conducting meta-analyses.
Methodological articles are also within the scope of Biological Genetics, particularly when new laboratory techniques or computational approaches are fully described and thoroughly compared with the existing benchmark methods.
Biochemical Genetics welcomes articles on the following topics: Genomics; Proteomics; Population genetics; Phylogenetics; Metagenomics; Microbial genetics; Genetics and evolution of wild and cultivated plants; Animal genetics and evolution; Human genetics and evolution; Genetic disorders; Genetic markers of diseases; Gene technology and therapy; Experimental and analytical methods; Statistical and computational methods.