Debashree Roy, Hannah M Johnson, Matthew J Hurlock, Kingshuk Roy, Qiang Zhang, Liane M Moreau
{"title":"Exploring the Complex Chemistry and Degradation of Ascorbic Acid in Aqueous Nanoparticle Synthesis.","authors":"Debashree Roy, Hannah M Johnson, Matthew J Hurlock, Kingshuk Roy, Qiang Zhang, Liane M Moreau","doi":"10.1002/anie.202412542","DOIUrl":null,"url":null,"abstract":"<p><p>Ascorbic acid (AA) is the most widely used reductant for noble metal nanoparticle (NP) synthesis. Despite the synthetic relevance, its aqueous chemistry remains misunderstood, due in part to various assumptions about its reduction pathway which are insufficiently supported by experimental evidence. This study aims to provide an understanding of the complex chemistry associated with AA under aqueous conditions. We demonstrate that (i) AA undergoes appreciable degradation in alkaline solution on a timescale relevant to NP synthesis, (ii) contrary to popular belief, AA does not degrade into dehydroascorbic acid (DHA), nor is DHA the oxidized product of AA under noble metal NP synthetic conditions, (iii) DHA, which readily degrades under alkaline conditions, can also effectively reduce metal salt precursors to metal NPs, (iv) neither ascorbate nor dehydroascorbate act as surface capping agents post-synthetically on the NPs (v) AA degradation time greatly affects the morphology and polydispersity of the resultant NP. Results from our mechanistic investigation enabled us to utilize purposefully-aged reductants to achieve control over shape yield and monodispersity in the seed-mediated synthesis of Au nanorods. Our findings have important implications for achieving monodispersed products in the many metal NP synthesis reactions that make use of AA as a reducing agent.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":" ","pages":"e202412542"},"PeriodicalIF":16.1000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202412542","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/6 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Ascorbic acid (AA) is the most widely used reductant for noble metal nanoparticle (NP) synthesis. Despite the synthetic relevance, its aqueous chemistry remains misunderstood, due in part to various assumptions about its reduction pathway which are insufficiently supported by experimental evidence. This study aims to provide an understanding of the complex chemistry associated with AA under aqueous conditions. We demonstrate that (i) AA undergoes appreciable degradation in alkaline solution on a timescale relevant to NP synthesis, (ii) contrary to popular belief, AA does not degrade into dehydroascorbic acid (DHA), nor is DHA the oxidized product of AA under noble metal NP synthetic conditions, (iii) DHA, which readily degrades under alkaline conditions, can also effectively reduce metal salt precursors to metal NPs, (iv) neither ascorbate nor dehydroascorbate act as surface capping agents post-synthetically on the NPs (v) AA degradation time greatly affects the morphology and polydispersity of the resultant NP. Results from our mechanistic investigation enabled us to utilize purposefully-aged reductants to achieve control over shape yield and monodispersity in the seed-mediated synthesis of Au nanorods. Our findings have important implications for achieving monodispersed products in the many metal NP synthesis reactions that make use of AA as a reducing agent.
期刊介绍:
Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.