Achieving high thermoelectric performance through ultra-low lattice thermal conductivity based on phonon localization

IF 38.6 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Joule Pub Date : 2024-09-18 DOI:10.1016/j.joule.2024.06.020
Hailong Yang , Baohai Jia , Lin Xie , Dasha Mao , Junchao Xia , Jianmin Yang , Minhui Yuan , Quan Gan , Xusheng Liu , Mingyuan Hu , Jing Shuai , Jiaqing He
{"title":"Achieving high thermoelectric performance through ultra-low lattice thermal conductivity based on phonon localization","authors":"Hailong Yang ,&nbsp;Baohai Jia ,&nbsp;Lin Xie ,&nbsp;Dasha Mao ,&nbsp;Junchao Xia ,&nbsp;Jianmin Yang ,&nbsp;Minhui Yuan ,&nbsp;Quan Gan ,&nbsp;Xusheng Liu ,&nbsp;Mingyuan Hu ,&nbsp;Jing Shuai ,&nbsp;Jiaqing He","doi":"10.1016/j.joule.2024.06.020","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>Beyond phonon transport, non-propagating transport is also crucial for crystals to achieve ultra-low lattice </span>thermal conductivity (κ</span><sub>L</sub><span><span>) approaching the amorphous limitation. In our study, the demonstrated enhancement of </span>phonon localization proves instrumental in achieving ultra-low κ</span><sub>L</sub>, offering an understanding of the role of non-propagating transport. We experimentally verified this principle through a meticulously designed vapor-liquid-solid reaction in Mg<sub>3</sub>(Sb,Bi)<sub>2</sub>-based materials. A remarkably low κ<sub>L</sub><span> of 0.19 W/mK at room temperature was obtained. This marked a 77% reduction, compared with full-density counterparts, and was attributed to enhanced localization involved in high-frequency phonons. Moreover, we achieved a record zT value close to 1.2 at room temperature, along with the highest average zT value of 1.6 from 300 to 573 K among all n-type materials. These remarkable results align precisely with electron-phonon decoupling through strengthening phonon localization for materials design and application, which underscores the pivotal role in thermal transport.</span></p></div>","PeriodicalId":343,"journal":{"name":"Joule","volume":"8 9","pages":"Pages 2667-2680"},"PeriodicalIF":38.6000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Joule","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2542435124002964","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Beyond phonon transport, non-propagating transport is also crucial for crystals to achieve ultra-low lattice thermal conductivity (κL) approaching the amorphous limitation. In our study, the demonstrated enhancement of phonon localization proves instrumental in achieving ultra-low κL, offering an understanding of the role of non-propagating transport. We experimentally verified this principle through a meticulously designed vapor-liquid-solid reaction in Mg3(Sb,Bi)2-based materials. A remarkably low κL of 0.19 W/mK at room temperature was obtained. This marked a 77% reduction, compared with full-density counterparts, and was attributed to enhanced localization involved in high-frequency phonons. Moreover, we achieved a record zT value close to 1.2 at room temperature, along with the highest average zT value of 1.6 from 300 to 573 K among all n-type materials. These remarkable results align precisely with electron-phonon decoupling through strengthening phonon localization for materials design and application, which underscores the pivotal role in thermal transport.

Abstract Image

Abstract Image

基于声子定位的超低晶格热导率实现高热电性能
除了声子传输之外,非传播传输对于晶体实现接近非晶极限的超低晶格热导率(κL)也至关重要。在我们的研究中,声子局域化的增强证明有助于实现超低 κL,从而让我们了解了非传播传输的作用。我们通过在 Mg3(Sb,Bi)2 基材料中精心设计的汽-液-固反应,在实验中验证了这一原理。在室温下,κL 显著降低至 0.19 W/mK。与全密度材料相比,κL 降低了 77%,这归因于高频声子的局域化增强。此外,我们还创下了室温下 zT 值接近 1.2 的记录,并且在所有 n 型材料中,从 300 K 到 573 K 的平均 zT 值最高,达到 1.6。这些非凡的成果与通过加强声子定位实现电子-声子解耦的材料设计和应用不谋而合,凸显了声子在热传输中的关键作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Joule
Joule Energy-General Energy
CiteScore
53.10
自引率
2.00%
发文量
198
期刊介绍: Joule is a sister journal to Cell that focuses on research, analysis, and ideas related to sustainable energy. It aims to address the global challenge of the need for more sustainable energy solutions. Joule is a forward-looking journal that bridges disciplines and scales of energy research. It connects researchers and analysts working on scientific, technical, economic, policy, and social challenges related to sustainable energy. The journal covers a wide range of energy research, from fundamental laboratory studies on energy conversion and storage to global-level analysis. Joule aims to highlight and amplify the implications, challenges, and opportunities of novel energy research for different groups in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信