Hao Li, Han Zhang, Xinyu Yue, Jingshu Ban, Jie Hu, Fushun Tang
{"title":"Significant promotion of NO separation selectivity from flue gas by the –NH 2 functional group on Fe–Ni bimetallic MOF at ambient conditions","authors":"Hao Li, Han Zhang, Xinyu Yue, Jingshu Ban, Jie Hu, Fushun Tang","doi":"10.1071/ch24060","DOIUrl":null,"url":null,"abstract":"<p>In this paper, the bimetallic metal–organic frameworks (MOFs) of FeNi-BDC and FeNi-BDC-NH<sub>2</sub> (BDC, 1,4-benzenedicarboxylate) with similar Fe/Ni molar ratio, crystal structure, porosity and thermal stability were synthesized by a solvothermal method. The results of adsorption experiments at ambient conditions showed that the adsorptive uptake of NO, CO<sub>2</sub>, O<sub>2</sub> and N<sub>2</sub> on FeNi-BDC were all very small under different adsorption partial pressures, with FeNi-BDC displaying a weak adsorption property because of its lack of unsaturated adsorption sites. On the contrary, at 100 kPa, the adsorption of NO by FeNi-BDC-NH<sub>2</sub> was considerably higher than that by FeNi-BDC, indicating that the incorporation of NH<sub>2</sub> on the ligand could effectively enhance the adsorption of NO. The adsorption capacity of FeNi-BDC-NH<sub>2</sub> for NO reached 142.17 cm<sup>3</sup> g<sup>−1</sup>, which was considerably higher than its capacity for CO<sub>2</sub>, O<sub>2</sub> and N<sub>2</sub> under the same conditions. Ideal Adsorption Solution Theory simulations calculated the adsorption selectivity for NO/CO<sub>2</sub> and NO/O<sub>2</sub> under a mixed atmosphere to reach 1325 and 13,346 respectively, demonstrating high adsorption selectivity. Through <i>in situ</i> infrared experiments and calculations of the enthalpy of adsorption, it was demonstrated that FeNi-BDC-NH<sub>2</sub> adsorbed NO because NO can combine with NH<sub>2</sub> in the material to form a NONOate structure. A preliminarily exploration of the mechanism of NO adsorption and the influence of NH<sub>2</sub> functional groups on the adsorption and separation of NO revealed that the selectivity of adsorption was closely related to the variability of the enthalpy of adsorption. This also provided a new strategy for the adsorption and separation of NO in the flue gas environment.</p>","PeriodicalId":8575,"journal":{"name":"Australian Journal of Chemistry","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Australian Journal of Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1071/ch24060","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, the bimetallic metal–organic frameworks (MOFs) of FeNi-BDC and FeNi-BDC-NH2 (BDC, 1,4-benzenedicarboxylate) with similar Fe/Ni molar ratio, crystal structure, porosity and thermal stability were synthesized by a solvothermal method. The results of adsorption experiments at ambient conditions showed that the adsorptive uptake of NO, CO2, O2 and N2 on FeNi-BDC were all very small under different adsorption partial pressures, with FeNi-BDC displaying a weak adsorption property because of its lack of unsaturated adsorption sites. On the contrary, at 100 kPa, the adsorption of NO by FeNi-BDC-NH2 was considerably higher than that by FeNi-BDC, indicating that the incorporation of NH2 on the ligand could effectively enhance the adsorption of NO. The adsorption capacity of FeNi-BDC-NH2 for NO reached 142.17 cm3 g−1, which was considerably higher than its capacity for CO2, O2 and N2 under the same conditions. Ideal Adsorption Solution Theory simulations calculated the adsorption selectivity for NO/CO2 and NO/O2 under a mixed atmosphere to reach 1325 and 13,346 respectively, demonstrating high adsorption selectivity. Through in situ infrared experiments and calculations of the enthalpy of adsorption, it was demonstrated that FeNi-BDC-NH2 adsorbed NO because NO can combine with NH2 in the material to form a NONOate structure. A preliminarily exploration of the mechanism of NO adsorption and the influence of NH2 functional groups on the adsorption and separation of NO revealed that the selectivity of adsorption was closely related to the variability of the enthalpy of adsorption. This also provided a new strategy for the adsorption and separation of NO in the flue gas environment.
期刊介绍:
Australian Journal of Chemistry - an International Journal for Chemical Science publishes research papers from all fields of chemical science. Papers that are multidisciplinary or address new or emerging areas of chemistry are particularly encouraged. Thus, the scope is dynamic. It includes (but is not limited to) synthesis, structure, new materials, macromolecules and polymers, supramolecular chemistry, analytical and environmental chemistry, natural products, biological and medicinal chemistry, nanotechnology, and surface chemistry.
Australian Journal of Chemistry is published with the endorsement of the Commonwealth Scientific and Industrial Research Organisation (CSIRO) and the Australian Academy of Science.