Development and experimental assessment of a multi-annual energy monitoring tool to support energy intelligence and management in telecommunication industry
{"title":"Development and experimental assessment of a multi-annual energy monitoring tool to support energy intelligence and management in telecommunication industry","authors":"Marco Sorrentino, Nicola Franzese, Alena Trifirò","doi":"10.1007/s12053-024-10242-9","DOIUrl":null,"url":null,"abstract":"<div><p>Carbon-footprint reduction of key industrial buildings is addressed, by proposing methodologies for continuously monitoring telecommunication (TLC) central offices (COs). Main aim is classifying sites according to their efficiency and reliability, via the diagnosis of anomalous electricity consumptions. Such a goal is achieved through the definition of new key performance indicators (KPIs) based on TLC and cooling energy demand, improving the outcomes of pre-existing methods. While the reliability index and index of cluster reliability are specifically proposed to evaluate and physically assess the impact of climate control (CLC, i.e., the parasitic quota) electricity consumption with respect to the TLC one, the here introduced coefficient of variation of telecommunication energy allows for a more solid evaluation of energy measurements reliability. Another target of this study is to extend the afore-mentioned KPIs-based analysis to multi-annual periods of monitoring, thus allowing successfully meeting the currently in-force ISO 50001 standard. Specific central offices were then selected and analyzed to verify the results physical meaning. The method was proven effective in classifying central offices belonging to climate-homogenous fleets, according to the reliability level estimated over a triannual timeframe. Positive impacts in terms of attainable energy saving through improved thermal management, as well as methodology extendibility to other industrial sectors are finally presented and discussed.</p></div>","PeriodicalId":537,"journal":{"name":"Energy Efficiency","volume":"17 6","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s12053-024-10242-9.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Efficiency","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s12053-024-10242-9","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Carbon-footprint reduction of key industrial buildings is addressed, by proposing methodologies for continuously monitoring telecommunication (TLC) central offices (COs). Main aim is classifying sites according to their efficiency and reliability, via the diagnosis of anomalous electricity consumptions. Such a goal is achieved through the definition of new key performance indicators (KPIs) based on TLC and cooling energy demand, improving the outcomes of pre-existing methods. While the reliability index and index of cluster reliability are specifically proposed to evaluate and physically assess the impact of climate control (CLC, i.e., the parasitic quota) electricity consumption with respect to the TLC one, the here introduced coefficient of variation of telecommunication energy allows for a more solid evaluation of energy measurements reliability. Another target of this study is to extend the afore-mentioned KPIs-based analysis to multi-annual periods of monitoring, thus allowing successfully meeting the currently in-force ISO 50001 standard. Specific central offices were then selected and analyzed to verify the results physical meaning. The method was proven effective in classifying central offices belonging to climate-homogenous fleets, according to the reliability level estimated over a triannual timeframe. Positive impacts in terms of attainable energy saving through improved thermal management, as well as methodology extendibility to other industrial sectors are finally presented and discussed.
期刊介绍:
The journal Energy Efficiency covers wide-ranging aspects of energy efficiency in the residential, tertiary, industrial and transport sectors. Coverage includes a number of different topics and disciplines including energy efficiency policies at local, regional, national and international levels; long term impact of energy efficiency; technologies to improve energy efficiency; consumer behavior and the dynamics of consumption; socio-economic impacts of energy efficiency measures; energy efficiency as a virtual utility; transportation issues; building issues; energy management systems and energy services; energy planning and risk assessment; energy efficiency in developing countries and economies in transition; non-energy benefits of energy efficiency and opportunities for policy integration; energy education and training, and emerging technologies. See Aims and Scope for more details.