Characterization of seismic b-value around kopili fault and its neighboring region prior to 28th April 2021 earthquake

IF 1.6 4区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS
Vickey Sharma, Dipok Kumar Bora, Devajit Hazarika, Rajib Biswas
{"title":"Characterization of seismic b-value around kopili fault and its neighboring region prior to 28th April 2021 earthquake","authors":"Vickey Sharma,&nbsp;Dipok Kumar Bora,&nbsp;Devajit Hazarika,&nbsp;Rajib Biswas","doi":"10.1007/s10950-024-10232-5","DOIUrl":null,"url":null,"abstract":"<div><p>In the present study, the spatio-temporal variation of the seismic b-value in the vicinity of the Kopili fault and its surrounding area has been analysed using the unified and homogenous earthquake catalog of historical and instrumental (1950–2021) earthquake events. The study region is subdivided into 16 equisized square grids of 1° × 1° dimension, and the b-value is computed for each grid using the maximum likelihood method. The spatial distribution of the b-value varies from 0.58 to 1.14. The Kolmogorov–Smirnov (K-S) test has been conducted to check the significance of the spatial-temporal and depth-wise distributions of the b-value. The epicentral location of April 28th, 2021, lies in the low-b-value square grid. Likewise, the temporal b-value curve shows a decreasing trend before the occurrence of the April 28th, 2021 earthquake. The mean return period of the April 28th, 2021earthquake and the most probable maximum annual magnitude earthquake are also computed for this region. Meanwhile, the spatial associations and anomalous patterns between the b-value and factors like seismic moment or energy release and focal depth are assessed, as they contribute to a more comprehensive understanding of the seismicity in this area. The antithetical relationship between the b-value and seismic moment or energy release is established. While variation in b-value with depth provides new insights, low b-values are linked to the top of the crust, which could mean that the crust is uniform and that a lot of stress is building up.</p></div>","PeriodicalId":16994,"journal":{"name":"Journal of Seismology","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Seismology","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s10950-024-10232-5","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

In the present study, the spatio-temporal variation of the seismic b-value in the vicinity of the Kopili fault and its surrounding area has been analysed using the unified and homogenous earthquake catalog of historical and instrumental (1950–2021) earthquake events. The study region is subdivided into 16 equisized square grids of 1° × 1° dimension, and the b-value is computed for each grid using the maximum likelihood method. The spatial distribution of the b-value varies from 0.58 to 1.14. The Kolmogorov–Smirnov (K-S) test has been conducted to check the significance of the spatial-temporal and depth-wise distributions of the b-value. The epicentral location of April 28th, 2021, lies in the low-b-value square grid. Likewise, the temporal b-value curve shows a decreasing trend before the occurrence of the April 28th, 2021 earthquake. The mean return period of the April 28th, 2021earthquake and the most probable maximum annual magnitude earthquake are also computed for this region. Meanwhile, the spatial associations and anomalous patterns between the b-value and factors like seismic moment or energy release and focal depth are assessed, as they contribute to a more comprehensive understanding of the seismicity in this area. The antithetical relationship between the b-value and seismic moment or energy release is established. While variation in b-value with depth provides new insights, low b-values are linked to the top of the crust, which could mean that the crust is uniform and that a lot of stress is building up.

Abstract Image

Abstract Image

2021 年 4 月 28 日地震前科皮里断层及其邻近地区的地震 b 值特征
在本研究中,利用历史和仪器地震事件(1950-2021 年)的统一和同质地震目录,分析了科皮里断层附近及其周边地区地震 b 值的时空变化。研究区域被细分为 16 个尺寸为 1° × 1° 的等化正方形网格,并使用最大似然法计算每个网格的 b 值。b 值的空间分布从 0.58 到 1.14 不等。对 b 值的时空分布和深度分布进行了 Kolmogorov-Smirnov (K-S) 检验。2021 年 4 月 28 日的震中位置位于低 b 值方格网中。同样,在 2021 年 4 月 28 日地震发生之前,时间 b 值曲线也呈下降趋势。此外,还计算了该区域 2021 年 4 月 28 日地震的平均重现期和最可能发生的最大年震级地震。同时,评估了 b 值与地震力矩或能量释放、焦深等因素之间的空间关联和异常模式,这有助于更全面地了解该地区的地震活动性。确定了 b 值与地震力矩或能量释放之间的反比关系。虽然 b 值随深度的变化提供了新的见解,但低 b 值与地壳顶部有关,这可能意味着地壳是均匀的,大量应力正在积聚。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Seismology
Journal of Seismology 地学-地球化学与地球物理
CiteScore
3.30
自引率
6.20%
发文量
67
审稿时长
3 months
期刊介绍: Journal of Seismology is an international journal specialising in all observational and theoretical aspects related to earthquake occurrence. Research topics may cover: seismotectonics, seismicity, historical seismicity, seismic source physics, strong ground motion studies, seismic hazard or risk, engineering seismology, physics of fault systems, triggered and induced seismicity, mining seismology, volcano seismology, earthquake prediction, structural investigations ranging from local to regional and global studies with a particular focus on passive experiments.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信