On the Solution Existence for Collocation Discretizations of Time-Fractional Subdiffusion Equations

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Sebastian Franz, Natalia Kopteva
{"title":"On the Solution Existence for Collocation Discretizations of Time-Fractional Subdiffusion Equations","authors":"Sebastian Franz, Natalia Kopteva","doi":"10.1007/s10915-024-02619-w","DOIUrl":null,"url":null,"abstract":"<p>Time-fractional parabolic equations with a Caputo time derivative of order <span>\\(\\alpha \\in (0,1)\\)</span> are discretized in time using continuous collocation methods. For such discretizations, we give sufficient conditions for existence and uniqueness of their solutions. Two approaches are explored: the Lax–Milgram Theorem and the eigenfunction expansion. The resulting sufficient conditions, which involve certain <span>\\(m\\times m\\)</span> matrices (where <i>m</i> is the order of the collocation scheme), are verified both analytically, for all <span>\\(m\\ge 1\\)</span> and all sets of collocation points, and computationally, for all <span>\\( m\\le 20\\)</span>. The semilinear case is also addressed.\n</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10915-024-02619-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Time-fractional parabolic equations with a Caputo time derivative of order \(\alpha \in (0,1)\) are discretized in time using continuous collocation methods. For such discretizations, we give sufficient conditions for existence and uniqueness of their solutions. Two approaches are explored: the Lax–Milgram Theorem and the eigenfunction expansion. The resulting sufficient conditions, which involve certain \(m\times m\) matrices (where m is the order of the collocation scheme), are verified both analytically, for all \(m\ge 1\) and all sets of collocation points, and computationally, for all \( m\le 20\). The semilinear case is also addressed.

Abstract Image

论时间-分数子扩散方程对位离散化的解存在性
使用连续配位法对具有阶数为 \(\alpha \in (0,1)\) 的卡普托时间导数的时分数抛物方程进行时间离散化。对于这种离散化,我们给出了其解的存在性和唯一性的充分条件。我们探讨了两种方法:Lax-Milgram 定理和特征函数展开。由此产生的充分条件涉及到某些矩阵(其中m是配位方案的阶),对于所有的(m\ge 1\)和所有的配位点集,这些充分条件都得到了分析验证;对于所有的(m\le 20\),这些充分条件也得到了计算验证。半线性情况也得到了解决。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信