Yang Liu, Jianping Liang, Hongli Wang, Ke Lu, Zikai Zhou, Hongwei Shen, Yihao Xu, Kun Yang, Dezheng Yang
{"title":"A study of tiamulin removal by nanosecond pulsed gas–liquid discharge underwater","authors":"Yang Liu, Jianping Liang, Hongli Wang, Ke Lu, Zikai Zhou, Hongwei Shen, Yihao Xu, Kun Yang, Dezheng Yang","doi":"10.1002/ppap.202400013","DOIUrl":null,"url":null,"abstract":"In this study, gas–liquid discharge plasma excited by nanosecond pulsed voltage is used to efficiently remove tiamulin (TIA) from water. The discharge produces a large number of reactive species (H<jats:sub>2</jats:sub>O<jats:sub>2</jats:sub>, OH radicals, NO<jats:sub>3</jats:sub><jats:sup>−</jats:sup>, etc.) that can attack the TIA molecules. The effects of peak pulse voltage, initial TIA concentration, gas composition, and the addition of ferrous sulfate and persulfate on TIA removal were mainly investigated. The results showed that the oxygen plasma could approach 100% removal within 30 min of treatment time. The addition of the catalyst increased the TIA removal efficiency by approximately 15% during the 10‐min discharge treatment time. The toxicity of 12 intermediates was analyzed and the degradation mechanism of TIA was investigated.","PeriodicalId":20135,"journal":{"name":"Plasma Processes and Polymers","volume":"7 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plasma Processes and Polymers","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1002/ppap.202400013","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, gas–liquid discharge plasma excited by nanosecond pulsed voltage is used to efficiently remove tiamulin (TIA) from water. The discharge produces a large number of reactive species (H2O2, OH radicals, NO3−, etc.) that can attack the TIA molecules. The effects of peak pulse voltage, initial TIA concentration, gas composition, and the addition of ferrous sulfate and persulfate on TIA removal were mainly investigated. The results showed that the oxygen plasma could approach 100% removal within 30 min of treatment time. The addition of the catalyst increased the TIA removal efficiency by approximately 15% during the 10‐min discharge treatment time. The toxicity of 12 intermediates was analyzed and the degradation mechanism of TIA was investigated.
期刊介绍:
Plasma Processes & Polymers focuses on the interdisciplinary field of low temperature plasma science, covering both experimental and theoretical aspects of fundamental and applied research in materials science, physics, chemistry and engineering in the area of plasma sources and plasma-based treatments.