Srivatsav Kunnawalkam Elayavalli, Koichi Oyakawa, Forte Shinko, Pieter Spaas
{"title":"Hyperfiniteness for group actions on trees","authors":"Srivatsav Kunnawalkam Elayavalli, Koichi Oyakawa, Forte Shinko, Pieter Spaas","doi":"10.1090/proc/16851","DOIUrl":null,"url":null,"abstract":"<p>We identify natural conditions for a countable group acting on a countable tree which imply that the orbit equivalence relation of the induced action on the Gromov boundary is Borel hyperfinite. Examples of this condition include acylindrical actions. We also identify a natural weakening of the aforementioned conditions that implies measure hyperfiniteness of the boundary action. We then document examples of group actions on trees whose boundary action is not hyperfinite.</p>","PeriodicalId":20696,"journal":{"name":"Proceedings of the American Mathematical Society","volume":"36 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the American Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/proc/16851","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We identify natural conditions for a countable group acting on a countable tree which imply that the orbit equivalence relation of the induced action on the Gromov boundary is Borel hyperfinite. Examples of this condition include acylindrical actions. We also identify a natural weakening of the aforementioned conditions that implies measure hyperfiniteness of the boundary action. We then document examples of group actions on trees whose boundary action is not hyperfinite.
期刊介绍:
All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are.
This journal is devoted to shorter research articles (not to exceed 15 printed pages) in all areas of pure and applied mathematics. To be published in the Proceedings, a paper must be correct, new, and significant. Further, it must be well written and of interest to a substantial number of mathematicians. Piecemeal results, such as an inconclusive step toward an unproved major theorem or a minor variation on a known result, are in general not acceptable for publication. Longer papers may be submitted to the Transactions of the American Mathematical Society. Published pages are the same size as those generated in the style files provided for AMS-LaTeX.