Abhishek Bharadwaj, Aprameyo Pal, Veekesh Kumar, R. Thangadurai
{"title":"Sufficient conditions for a problem of Polya","authors":"Abhishek Bharadwaj, Aprameyo Pal, Veekesh Kumar, R. Thangadurai","doi":"10.1090/proc/16826","DOIUrl":null,"url":null,"abstract":"<p>Let <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"alpha\"> <mml:semantics> <mml:mi>α</mml:mi> <mml:annotation encoding=\"application/x-tex\">\\alpha</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be a non-zero algebraic number. Let <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper K\"> <mml:semantics> <mml:mi>K</mml:mi> <mml:annotation encoding=\"application/x-tex\">K</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be the Galois closure of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper Q left-parenthesis alpha right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mrow> <mml:mi mathvariant=\"double-struck\">Q</mml:mi> </mml:mrow> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>α</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\mathbb {Q}(\\alpha )</mml:annotation> </mml:semantics> </mml:math> </inline-formula> with Galois group <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G\"> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding=\"application/x-tex\">G</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper Q overbar\"> <mml:semantics> <mml:mrow> <mml:mover> <mml:mrow> <mml:mi mathvariant=\"double-struck\">Q</mml:mi> </mml:mrow> <mml:mo stretchy=\"false\">¯</mml:mo> </mml:mover> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\bar {\\mathbb {Q}}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be the algebraic closure of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper Q\"> <mml:semantics> <mml:mrow> <mml:mi mathvariant=\"double-struck\">Q</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\mathbb {Q}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. In this article, among the other results, we prove the following. <italic>If <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"f element-of ModifyingAbove double-struck upper Q With bar left-bracket upper G right-bracket\"> <mml:semantics> <mml:mrow> <mml:mi>f</mml:mi> <mml:mo>∈</mml:mo> <mml:mrow> <mml:mover> <mml:mrow> <mml:mi mathvariant=\"double-struck\">Q</mml:mi> </mml:mrow> <mml:mo stretchy=\"false\">¯</mml:mo> </mml:mover> </mml:mrow> <mml:mo stretchy=\"false\">[</mml:mo> <mml:mi>G</mml:mi> <mml:mo stretchy=\"false\">]</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">f\\in \\bar {\\mathbb {Q}}[G]</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a non-zero element of the group ring <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"ModifyingAbove double-struck upper Q With bar left-bracket upper G right-bracket\"> <mml:semantics> <mml:mrow> <mml:mrow> <mml:mover> <mml:mrow> <mml:mi mathvariant=\"double-struck\">Q</mml:mi> </mml:mrow> <mml:mo stretchy=\"false\">¯</mml:mo> </mml:mover> </mml:mrow> <mml:mo stretchy=\"false\">[</mml:mo> <mml:mi>G</mml:mi> <mml:mo stretchy=\"false\">]</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\bar {\\mathbb {Q}}[G]</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"alpha\"> <mml:semantics> <mml:mi>α</mml:mi> <mml:annotation encoding=\"application/x-tex\">\\alpha</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a given algebraic number such that <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"f left-parenthesis alpha Superscript n Baseline right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mi>f</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:msup> <mml:mi>α</mml:mi> <mml:mi>n</mml:mi> </mml:msup> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">f(\\alpha ^n)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a non-zero algebraic integer for infinitely many natural numbers <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"n\"> <mml:semantics> <mml:mi>n</mml:mi> <mml:annotation encoding=\"application/x-tex\">n</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, then <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"alpha\"> <mml:semantics> <mml:mi>α</mml:mi> <mml:annotation encoding=\"application/x-tex\">\\alpha</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is an algebraic integer.</italic> This result generalises the result of Polya [Rend. Circ Mat. Palermo, 40 (1915), pp. 1–16], Corvaja and Zannier [Acta Math. 193 (2004), pp. 175–191] and Philippon and Rath [J. Number Theory 219 (2021), pp. 198–211]. We also prove the analogue of this result for rational functions with algebraic coefficients. Inspired by a result of B. de Smit [J. Number Theory 45 (1993), pp. 112–116], we prove a finite version of the Polya type result for a binary recurrence sequences of non-zero algebraic numbers. In order to prove these results, we apply the techniques of Corvaja and Zannier along with the results of Kulkarni <italic>et al.</italic> [Trans. Amer. Math. Soc. 371 (2019), pp. 3787–3804], which are applications of the Schmidt subspace theorem.</p>","PeriodicalId":20696,"journal":{"name":"Proceedings of the American Mathematical Society","volume":"25 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the American Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/proc/16826","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Let α\alpha be a non-zero algebraic number. Let KK be the Galois closure of Q(α)\mathbb {Q}(\alpha ) with Galois group GG and Q¯\bar {\mathbb {Q}} be the algebraic closure of Q\mathbb {Q}. In this article, among the other results, we prove the following. If f∈Q¯[G]f\in \bar {\mathbb {Q}}[G] is a non-zero element of the group ring Q¯[G]\bar {\mathbb {Q}}[G] and α\alpha is a given algebraic number such that f(αn)f(\alpha ^n) is a non-zero algebraic integer for infinitely many natural numbers nn, then α\alpha is an algebraic integer. This result generalises the result of Polya [Rend. Circ Mat. Palermo, 40 (1915), pp. 1–16], Corvaja and Zannier [Acta Math. 193 (2004), pp. 175–191] and Philippon and Rath [J. Number Theory 219 (2021), pp. 198–211]. We also prove the analogue of this result for rational functions with algebraic coefficients. Inspired by a result of B. de Smit [J. Number Theory 45 (1993), pp. 112–116], we prove a finite version of the Polya type result for a binary recurrence sequences of non-zero algebraic numbers. In order to prove these results, we apply the techniques of Corvaja and Zannier along with the results of Kulkarni et al. [Trans. Amer. Math. Soc. 371 (2019), pp. 3787–3804], which are applications of the Schmidt subspace theorem.
期刊介绍:
All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are.
This journal is devoted to shorter research articles (not to exceed 15 printed pages) in all areas of pure and applied mathematics. To be published in the Proceedings, a paper must be correct, new, and significant. Further, it must be well written and of interest to a substantial number of mathematicians. Piecemeal results, such as an inconclusive step toward an unproved major theorem or a minor variation on a known result, are in general not acceptable for publication. Longer papers may be submitted to the Transactions of the American Mathematical Society. Published pages are the same size as those generated in the style files provided for AMS-LaTeX.