{"title":"Strichartz type estimates for solutions to the Schrödinger equation","authors":"Jie Chen","doi":"10.1090/proc/16887","DOIUrl":null,"url":null,"abstract":"<p>In this article, we show the necessary and sufficient conditions for the inequality <disp-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-vertical-bar u double-vertical-bar Subscript upper L Sub Subscript t Sub Superscript q Subscript upper L Sub Subscript x Sub Superscript r Subscript Baseline less-than-or-equivalent-to double-vertical-bar u double-vertical-bar Subscript upper X Sub Superscript s comma b Subscript Baseline comma\"> <mml:semantics> <mml:mrow> <mml:mo fence=\"false\" stretchy=\"false\">‖</mml:mo> <mml:mi>u</mml:mi> <mml:msub> <mml:mo fence=\"false\" stretchy=\"false\">‖</mml:mo> <mml:mrow> <mml:msubsup> <mml:mi>L</mml:mi> <mml:mi>t</mml:mi> <mml:mi>q</mml:mi> </mml:msubsup> <mml:msubsup> <mml:mi>L</mml:mi> <mml:mi>x</mml:mi> <mml:mi>r</mml:mi> </mml:msubsup> </mml:mrow> </mml:msub> <mml:mo>≲</mml:mo> <mml:mo fence=\"false\" stretchy=\"false\">‖</mml:mo> <mml:mi>u</mml:mi> <mml:msub> <mml:mo fence=\"false\" stretchy=\"false\">‖</mml:mo> <mml:mrow> <mml:msup> <mml:mi>X</mml:mi> <mml:mrow> <mml:mi>s</mml:mi> <mml:mo>,</mml:mo> <mml:mi>b</mml:mi> </mml:mrow> </mml:msup> </mml:mrow> </mml:msub> <mml:mo>,</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\begin{equation*} \\|u\\|_{L_t^qL_x^r}\\lesssim \\|u\\|_{X^{s,b}}, \\end{equation*}</mml:annotation> </mml:semantics> </mml:math> </disp-formula> where <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-vertical-bar u double-vertical-bar Subscript upper X Sub Superscript s comma b Baseline colon-equal double-vertical-bar ModifyingAbove u With caret left-parenthesis tau comma xi right-parenthesis mathematical left-angle xi mathematical right-angle Superscript s Baseline mathematical left-angle tau plus StartAbsoluteValue xi EndAbsoluteValue squared mathematical right-angle Superscript b Baseline double-vertical-bar Subscript upper L Sub Subscript tau comma xi Sub Superscript 2\"> <mml:semantics> <mml:mrow> <mml:mo fence=\"false\" stretchy=\"false\">‖</mml:mo> <mml:mi>u</mml:mi> <mml:msub> <mml:mo fence=\"false\" stretchy=\"false\">‖</mml:mo> <mml:mrow> <mml:msup> <mml:mi>X</mml:mi> <mml:mrow> <mml:mi>s</mml:mi> <mml:mo>,</mml:mo> <mml:mi>b</mml:mi> </mml:mrow> </mml:msup> </mml:mrow> </mml:msub> <mml:mo>≔</mml:mo> <mml:mo fence=\"false\" stretchy=\"false\">‖</mml:mo> <mml:mrow> <mml:mover> <mml:mi>u</mml:mi> <mml:mo stretchy=\"false\">^</mml:mo> </mml:mover> </mml:mrow> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>τ</mml:mi> <mml:mo>,</mml:mo> <mml:mi>ξ</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo fence=\"false\" stretchy=\"false\">⟨</mml:mo> <mml:mi>ξ</mml:mi> <mml:msup> <mml:mo fence=\"false\" stretchy=\"false\">⟩</mml:mo> <mml:mi>s</mml:mi> </mml:msup> <mml:mo fence=\"false\" stretchy=\"false\">⟨</mml:mo> <mml:mi>τ</mml:mi> <mml:mo>+</mml:mo> <mml:mrow> <mml:mo stretchy=\"false\">|</mml:mo> </mml:mrow> <mml:mi>ξ</mml:mi> <mml:msup> <mml:mrow> <mml:mo stretchy=\"false\">|</mml:mo> </mml:mrow> <mml:mn>2</mml:mn> </mml:msup> <mml:msup> <mml:mo fence=\"false\" stretchy=\"false\">⟩</mml:mo> <mml:mi>b</mml:mi> </mml:msup> <mml:msub> <mml:mo fence=\"false\" stretchy=\"false\">‖</mml:mo> <mml:mrow> <mml:msubsup> <mml:mi>L</mml:mi> <mml:mrow> <mml:mi>τ</mml:mi> <mml:mo>,</mml:mo> <mml:mi>ξ</mml:mi> </mml:mrow> <mml:mn>2</mml:mn> </mml:msubsup> </mml:mrow> </mml:msub> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\|u\\|_{X^{s,b}}≔\\|\\hat {u}(\\tau ,\\xi )\\langle \\xi \\rangle ^s\\langle \\tau +|\\xi |^2\\rangle ^b \\|_{L_{\\tau ,\\xi }^2}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. These estimates are also referred to as Strichartz estimates related to Schrödinger equation. We also give a new proof of the maximal function estimates for solutions to Schrödinger and Airy equations.</p>","PeriodicalId":20696,"journal":{"name":"Proceedings of the American Mathematical Society","volume":"47 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the American Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/proc/16887","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this article, we show the necessary and sufficient conditions for the inequality ‖u‖LtqLxr≲‖u‖Xs,b,\begin{equation*} \|u\|_{L_t^qL_x^r}\lesssim \|u\|_{X^{s,b}}, \end{equation*} where ‖u‖Xs,b≔‖u^(τ,ξ)⟨ξ⟩s⟨τ+|ξ|2⟩b‖Lτ,ξ2\|u\|_{X^{s,b}}≔\|\hat {u}(\tau ,\xi )\langle \xi \rangle ^s\langle \tau +|\xi |^2\rangle ^b \|_{L_{\tau ,\xi }^2}. These estimates are also referred to as Strichartz estimates related to Schrödinger equation. We also give a new proof of the maximal function estimates for solutions to Schrödinger and Airy equations.
在本文中,我们展示了不等式 ‖ u ‖ L t q L x r ≲ ‖ u ‖ X s , b 的必要条件和充分条件。|u\|_{L_t^qL_x^r}\lesssim |u\|_{X^{s,b}}, end{equation*} 其中 ‖ u ‖ X s , b ≔ ‖ u ^ ( τ , ξ ) ξ ⟨ s τ + | ξ | 2 ⟩ b ‖ L τ 、ξ 2 \||u_{X^{s,b}}≔\||hat{u}(\tau ,\xi)(矩形 \xi )(矩形 \tau + |\xi |^2\rangle ^b \|{L_{tau,\xi}^2}。这些估计也被称为与薛定谔方程有关的斯特里查兹估计。我们还给出了薛定谔方程和艾里方程解的最大函数估计的新证明。
期刊介绍:
All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are.
This journal is devoted to shorter research articles (not to exceed 15 printed pages) in all areas of pure and applied mathematics. To be published in the Proceedings, a paper must be correct, new, and significant. Further, it must be well written and of interest to a substantial number of mathematicians. Piecemeal results, such as an inconclusive step toward an unproved major theorem or a minor variation on a known result, are in general not acceptable for publication. Longer papers may be submitted to the Transactions of the American Mathematical Society. Published pages are the same size as those generated in the style files provided for AMS-LaTeX.