Separation and Evaluation of the Gradient Relaxation in the Atomic Comagnetometer

IF 4.4 Q1 OPTICS
Linlin Yuan, Lihong Duan, Hang Gao, Ze Cai, Kai Zhang, Jiong Huang, Sixun Liu, Zhuo Wang, Feng Liu, Wei Quan
{"title":"Separation and Evaluation of the Gradient Relaxation in the Atomic Comagnetometer","authors":"Linlin Yuan,&nbsp;Lihong Duan,&nbsp;Hang Gao,&nbsp;Ze Cai,&nbsp;Kai Zhang,&nbsp;Jiong Huang,&nbsp;Sixun Liu,&nbsp;Zhuo Wang,&nbsp;Feng Liu,&nbsp;Wei Quan","doi":"10.1002/qute.202300464","DOIUrl":null,"url":null,"abstract":"<p>In the atomic comagnetometer, nuclear spin relaxation is a core parameter that affects the magnetic field suppression ability and stability, and is influenced by various gradient fields. It is necessary to measure and separate the effects of different gradients on nuclear spin, which helps to effectively suppress them separately. This article proposes a periodic optical pumping method for separating and measuring polarization gradient relaxation and magnetic field gradient relaxation, considering the effects of pump light and applied magnetic field. The comprehensive influence model for pump light on transverse nuclear spin relaxation is established, and the measurement steps and parameter selection criteria for the proposed method considering signal decay characteristics are provided. Furthermore, the proportion of various gradient relaxations is quantified. This work provides an evaluation method for gradient relaxation suppression, supporting the improvement of the measurement sensitivity and stability of the atomic comagnetometer.</p>","PeriodicalId":72073,"journal":{"name":"Advanced quantum technologies","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced quantum technologies","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/qute.202300464","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

In the atomic comagnetometer, nuclear spin relaxation is a core parameter that affects the magnetic field suppression ability and stability, and is influenced by various gradient fields. It is necessary to measure and separate the effects of different gradients on nuclear spin, which helps to effectively suppress them separately. This article proposes a periodic optical pumping method for separating and measuring polarization gradient relaxation and magnetic field gradient relaxation, considering the effects of pump light and applied magnetic field. The comprehensive influence model for pump light on transverse nuclear spin relaxation is established, and the measurement steps and parameter selection criteria for the proposed method considering signal decay characteristics are provided. Furthermore, the proportion of various gradient relaxations is quantified. This work provides an evaluation method for gradient relaxation suppression, supporting the improvement of the measurement sensitivity and stability of the atomic comagnetometer.

Abstract Image

原子磁强计中梯度松弛的分离与评估
在原子慧磁力计中,核自旋弛豫是影响磁场抑制能力和稳定性的核心参数,受到各种梯度场的影响。有必要测量和分离不同梯度对核自旋的影响,这有助于分别有效地抑制它们。本文考虑了泵浦光和外加磁场的影响,提出了一种分离和测量偏振梯度弛豫和磁场梯度弛豫的周期性光泵浦方法。建立了泵浦光对横向核自旋弛豫的综合影响模型,并给出了考虑信号衰减特性的拟议方法的测量步骤和参数选择标准。此外,还量化了各种梯度弛豫的比例。这项工作提供了梯度弛豫抑制的评估方法,有助于提高原子慧磁力计的测量灵敏度和稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信