{"title":"Copper oxide coupled with photon upconversion for solar water splitting","authors":"Yerbolat Magazov, Vladislav Kudryashov, Kuanysh Moldabekov, Magzhan Amze, Aiisha Nurmanova, Asset Aliyev, Nurxat Nuraje","doi":"10.1038/s43246-024-00574-5","DOIUrl":null,"url":null,"abstract":"Photoelectrochemical water splitting is a promising solution for harnessing solar radiation for hydrogen production. Copper oxide semiconductors, particularly materials based on cuprous oxide, have attracted attention due to their abundant elemental availability and scalable synthesis methods. To improve the generated photocurrent of the photoelectrode system, photon upconversion materials can be implemented into water-splitting devices. Here, we demonstrate the potential application of triplet-triplet annihilation-based upconversion in solar-assisted water splitting and highlight the significance of photonic designs to improve the light-harnessing properties of photoactive materials. The triplet-triplet annihilation mechanism is particularly suitable due to its efficient conversion at low photon intensity, namely under 1-sun illumination. Our results show that Cu2O coupled with an upconverter outperforms bare Cu2O by 56% in terms of produced photocurrent density. We construct a hybrid water-splitting device with an extended absorption range by utilizing a semi-transparent 600 nm Cu2O film with a 5 nm Au underlayer. Photoelectrochemical water splitting uses solar radiation for hydrogen production. Here, triplet-triplet annihilation-based upconversion is integrated into a water-splitting device which improves the light-harnessing properties of the photoactive materials","PeriodicalId":10589,"journal":{"name":"Communications Materials","volume":null,"pages":null},"PeriodicalIF":7.5000,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43246-024-00574-5.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s43246-024-00574-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Photoelectrochemical water splitting is a promising solution for harnessing solar radiation for hydrogen production. Copper oxide semiconductors, particularly materials based on cuprous oxide, have attracted attention due to their abundant elemental availability and scalable synthesis methods. To improve the generated photocurrent of the photoelectrode system, photon upconversion materials can be implemented into water-splitting devices. Here, we demonstrate the potential application of triplet-triplet annihilation-based upconversion in solar-assisted water splitting and highlight the significance of photonic designs to improve the light-harnessing properties of photoactive materials. The triplet-triplet annihilation mechanism is particularly suitable due to its efficient conversion at low photon intensity, namely under 1-sun illumination. Our results show that Cu2O coupled with an upconverter outperforms bare Cu2O by 56% in terms of produced photocurrent density. We construct a hybrid water-splitting device with an extended absorption range by utilizing a semi-transparent 600 nm Cu2O film with a 5 nm Au underlayer. Photoelectrochemical water splitting uses solar radiation for hydrogen production. Here, triplet-triplet annihilation-based upconversion is integrated into a water-splitting device which improves the light-harnessing properties of the photoactive materials
期刊介绍:
Communications Materials, a selective open access journal within Nature Portfolio, is dedicated to publishing top-tier research, reviews, and commentary across all facets of materials science. The journal showcases significant advancements in specialized research areas, encompassing both fundamental and applied studies. Serving as an open access option for materials sciences, Communications Materials applies less stringent criteria for impact and significance compared to Nature-branded journals, including Nature Communications.