{"title":"Sustainable starch-based bioplastics reinforced with carob filler: characterization and biodegradability assessments","authors":"","doi":"10.1080/1023666X.2024.2377648","DOIUrl":null,"url":null,"abstract":"<div><p>Starch-based thermoplastic polymer is a biopolymer that is being widely explored as a replacement for conventional polymers. Since thermoplastic starch suffers from mechanical defects, certain mechanical and thermal properties of starch-based polymers can be improved by incorporating fillers or reinforcements derived mainly from natural substances. This article reports the preparation, physicochemical, and mechanical characterization and biodegradation of starch-based bioplastics extracted from potato (Solanum tuberosum) peels using glycerol (G) as plasticizer and reinforced with carob powder, a readily growing plant in Mediterranean climates. The present study investigates the effect of incorporating different proportions (0, 2, 5, 10, and 15 wt.%) of carob powder (Cb) in the films thus prepared. These biopolymer films were fully characterized using analytical techniques including Fourier transform infrared spectroscopy with attenuated total reflection (FTIR/ATR), thermogravimetric analysis (TGA/DTG), X-ray diffraction (XRD), optical microscopy (OM), Scanning electron microscopy (SEM), mechanical evaluations, and biodegradability assessments. The biodegradability of the obtained bioplastic samples was evaluated. Scanning electron microscopy (SEM) revealed strong interfacial adhesion between the constituent filler and the polymer matrix.</p></div>","PeriodicalId":14236,"journal":{"name":"International Journal of Polymer Analysis and Characterization","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Polymer Analysis and Characterization","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S1023666X24000283","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Starch-based thermoplastic polymer is a biopolymer that is being widely explored as a replacement for conventional polymers. Since thermoplastic starch suffers from mechanical defects, certain mechanical and thermal properties of starch-based polymers can be improved by incorporating fillers or reinforcements derived mainly from natural substances. This article reports the preparation, physicochemical, and mechanical characterization and biodegradation of starch-based bioplastics extracted from potato (Solanum tuberosum) peels using glycerol (G) as plasticizer and reinforced with carob powder, a readily growing plant in Mediterranean climates. The present study investigates the effect of incorporating different proportions (0, 2, 5, 10, and 15 wt.%) of carob powder (Cb) in the films thus prepared. These biopolymer films were fully characterized using analytical techniques including Fourier transform infrared spectroscopy with attenuated total reflection (FTIR/ATR), thermogravimetric analysis (TGA/DTG), X-ray diffraction (XRD), optical microscopy (OM), Scanning electron microscopy (SEM), mechanical evaluations, and biodegradability assessments. The biodegradability of the obtained bioplastic samples was evaluated. Scanning electron microscopy (SEM) revealed strong interfacial adhesion between the constituent filler and the polymer matrix.
期刊介绍:
The scope of the journal is to publish original contributions and reviews on studies, methodologies, instrumentation, and applications involving the analysis and characterization of polymers and polymeric-based materials, including synthetic polymers, blends, composites, fibers, coatings, supramolecular structures, polysaccharides, and biopolymers. The Journal will accept papers and review articles on the following topics and research areas involving fundamental and applied studies of polymer analysis and characterization:
Characterization and analysis of new and existing polymers and polymeric-based materials.
Design and evaluation of analytical instrumentation and physical testing equipment.
Determination of molecular weight, size, conformation, branching, cross-linking, chemical structure, and sequence distribution.
Using separation, spectroscopic, and scattering techniques.
Surface characterization of polymeric materials.
Measurement of solution and bulk properties and behavior of polymers.
Studies involving structure-property-processing relationships, and polymer aging.
Analysis of oligomeric materials.
Analysis of polymer additives and decomposition products.