Gregor Hofmann;Anton Muhin;Norman Susilo;Friedhard Römer;Tim Wernicke;Michael Kneissl;Bernd Witzigmann
{"title":"Simulation of Carrier Injection Efficiency in AlGaN-Based UV-Light-Emitting Diodes","authors":"Gregor Hofmann;Anton Muhin;Norman Susilo;Friedhard Römer;Tim Wernicke;Michael Kneissl;Bernd Witzigmann","doi":"10.1109/JPHOT.2024.3430488","DOIUrl":null,"url":null,"abstract":"Numerical simulations of carrier transport in aluminium gallium nitride based ultraviolet light emitting diodes (UV-LED) are performed in order to understand injection efficiency for light sources in the deep ultraviolet. With our simulator, calibrated with experimental data from a 265 nm UV-LED, quantum efficiencies have been analyzed. The maximum internal quantum efficiency (IQE) of 30% consists of the product from radiative recombination efficiency (RRE) of 60% and carrier injection efficiency (CIE) of 50%. It is found that poor hole injection into the active region and a surplus of electrons limit both efficiencies, and leads to significant electron leakage into the p-side. This leakage is bias dependent, and has a minimum at maximum IQE. Further simulations show that distributed polarization doping (DPD) could improve carrier injection efficiency.","PeriodicalId":13204,"journal":{"name":"IEEE Photonics Journal","volume":"16 4","pages":"1-7"},"PeriodicalIF":2.1000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10602746","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Photonics Journal","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10602746/","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Numerical simulations of carrier transport in aluminium gallium nitride based ultraviolet light emitting diodes (UV-LED) are performed in order to understand injection efficiency for light sources in the deep ultraviolet. With our simulator, calibrated with experimental data from a 265 nm UV-LED, quantum efficiencies have been analyzed. The maximum internal quantum efficiency (IQE) of 30% consists of the product from radiative recombination efficiency (RRE) of 60% and carrier injection efficiency (CIE) of 50%. It is found that poor hole injection into the active region and a surplus of electrons limit both efficiencies, and leads to significant electron leakage into the p-side. This leakage is bias dependent, and has a minimum at maximum IQE. Further simulations show that distributed polarization doping (DPD) could improve carrier injection efficiency.
期刊介绍:
Breakthroughs in the generation of light and in its control and utilization have given rise to the field of Photonics, a rapidly expanding area of science and technology with major technological and economic impact. Photonics integrates quantum electronics and optics to accelerate progress in the generation of novel photon sources and in their utilization in emerging applications at the micro and nano scales spanning from the far-infrared/THz to the x-ray region of the electromagnetic spectrum. IEEE Photonics Journal is an online-only journal dedicated to the rapid disclosure of top-quality peer-reviewed research at the forefront of all areas of photonics. Contributions addressing issues ranging from fundamental understanding to emerging technologies and applications are within the scope of the Journal. The Journal includes topics in: Photon sources from far infrared to X-rays, Photonics materials and engineered photonic structures, Integrated optics and optoelectronic, Ultrafast, attosecond, high field and short wavelength photonics, Biophotonics, including DNA photonics, Nanophotonics, Magnetophotonics, Fundamentals of light propagation and interaction; nonlinear effects, Optical data storage, Fiber optics and optical communications devices, systems, and technologies, Micro Opto Electro Mechanical Systems (MOEMS), Microwave photonics, Optical Sensors.