On potentials whose level sets are orbits

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Philippe Bolle, Marco Mazzucchelli, Andrea Venturelli
{"title":"On potentials whose level sets are orbits","authors":"Philippe Bolle, Marco Mazzucchelli, Andrea Venturelli","doi":"10.1007/s00526-024-02790-w","DOIUrl":null,"url":null,"abstract":"<p>A level orbit of a mechanical Hamiltonian system is a solution of Newton equation that is contained in a level set of the potential energy. In 2003, Mark Levi asked for a characterization of the smooth potential energy functions on the plane with the property that any point on the plane lies on a level orbit; we call such functions Levi potentials. The basic examples are the radial monotone increasing smooth functions. In this paper we show that any Levi potential that is analytic or has totally path-disconnected critical set must be radial. Nevertheless, we show that every compact convex subset of the plane is the critical set of a Levi potential. A crucial observation for these theorems is that, outside the critical set, the family of level sets of a Levi potential forms a solution of the inverse curvature flow.\n</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00526-024-02790-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

A level orbit of a mechanical Hamiltonian system is a solution of Newton equation that is contained in a level set of the potential energy. In 2003, Mark Levi asked for a characterization of the smooth potential energy functions on the plane with the property that any point on the plane lies on a level orbit; we call such functions Levi potentials. The basic examples are the radial monotone increasing smooth functions. In this paper we show that any Levi potential that is analytic or has totally path-disconnected critical set must be radial. Nevertheless, we show that every compact convex subset of the plane is the critical set of a Levi potential. A crucial observation for these theorems is that, outside the critical set, the family of level sets of a Levi potential forms a solution of the inverse curvature flow.

Abstract Image

关于水平集为轨道的势
机械哈密顿系统的水平轨道是牛顿方程的解,它包含在势能的水平集中。2003 年,马克-列维(Mark Levi)要求对平面上的光滑势能函数进行表征,这些函数具有平面上任意一点位于水平轨道上的特性;我们称这些函数为列维势。基本的例子是径向单调递增光滑函数。在本文中,我们证明了任何解析的或具有完全路径断开临界集的列维势都必须是径向的。然而,我们证明了平面的每个紧凑凸子集都是 Levi 势的临界集。这些定理的一个关键观察点是,在临界集之外,Levi 势的水平集群构成了反曲率流的解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信