Philippe Bolle, Marco Mazzucchelli, Andrea Venturelli
{"title":"On potentials whose level sets are orbits","authors":"Philippe Bolle, Marco Mazzucchelli, Andrea Venturelli","doi":"10.1007/s00526-024-02790-w","DOIUrl":null,"url":null,"abstract":"<p>A level orbit of a mechanical Hamiltonian system is a solution of Newton equation that is contained in a level set of the potential energy. In 2003, Mark Levi asked for a characterization of the smooth potential energy functions on the plane with the property that any point on the plane lies on a level orbit; we call such functions Levi potentials. The basic examples are the radial monotone increasing smooth functions. In this paper we show that any Levi potential that is analytic or has totally path-disconnected critical set must be radial. Nevertheless, we show that every compact convex subset of the plane is the critical set of a Levi potential. A crucial observation for these theorems is that, outside the critical set, the family of level sets of a Levi potential forms a solution of the inverse curvature flow.\n</p>","PeriodicalId":9478,"journal":{"name":"Calculus of Variations and Partial Differential Equations","volume":"84 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Calculus of Variations and Partial Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00526-024-02790-w","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
A level orbit of a mechanical Hamiltonian system is a solution of Newton equation that is contained in a level set of the potential energy. In 2003, Mark Levi asked for a characterization of the smooth potential energy functions on the plane with the property that any point on the plane lies on a level orbit; we call such functions Levi potentials. The basic examples are the radial monotone increasing smooth functions. In this paper we show that any Levi potential that is analytic or has totally path-disconnected critical set must be radial. Nevertheless, we show that every compact convex subset of the plane is the critical set of a Levi potential. A crucial observation for these theorems is that, outside the critical set, the family of level sets of a Levi potential forms a solution of the inverse curvature flow.
期刊介绍:
Calculus of variations and partial differential equations are classical, very active, closely related areas of mathematics, with important ramifications in differential geometry and mathematical physics. In the last four decades this subject has enjoyed a flourishing development worldwide, which is still continuing and extending to broader perspectives.
This journal will attract and collect many of the important top-quality contributions to this field of research, and stress the interactions between analysts, geometers, and physicists. The field of Calculus of Variations and Partial Differential Equations is extensive; nonetheless, the journal will be open to all interesting new developments. Topics to be covered include:
- Minimization problems for variational integrals, existence and regularity theory for minimizers and critical points, geometric measure theory
- Variational methods for partial differential equations, optimal mass transportation, linear and nonlinear eigenvalue problems
- Variational problems in differential and complex geometry
- Variational methods in global analysis and topology
- Dynamical systems, symplectic geometry, periodic solutions of Hamiltonian systems
- Variational methods in mathematical physics, nonlinear elasticity, asymptotic variational problems, homogenization, capillarity phenomena, free boundary problems and phase transitions
- Monge-Ampère equations and other fully nonlinear partial differential equations related to problems in differential geometry, complex geometry, and physics.